Programming Systems for High-Performance
Computing

Marc Snir

g\ U.S. DEPARTMENT OF
.4, ENERGY

Preamble

CCGrid13
_ 2
S May 2013

In The Beginning

= Distributed Memory
Parallel Systems are

repIaqng vector The 1991 MPCI Yearly Report:
machines. The Attack of the Killer Micros
" CM_S (USI ng SPARC) Eugene D.. Brooks and Karen H Warrgn,‘cditors
announced 1991 Lemaor Lionnoes Nesional Laboratory
Livermore, California 94550

— 1024 node CM-5 is at March 1991

top of first TOP500

list in 1993

" Problem: Need to rewrite
all (vector) code in new
programming model

CCGrid13

é May 2013

Some of the Attempts

1990 1995 2000 2005 2010

Widely used

MPI MPI1 MPI2 MPI3
Little to no public use M—

Too early to say OpenACC

S May 2013 N

CCGrid13

Questions

1. Message-passing is claimed to be “a difficult way to program”. If
so, why is it the only widely used way to program HPC systems?

2. What’s needed for a programming system to succeed?

3. What’s needed in a good HPC parallel programming system?

CCGrid13

A May 2013

Definitions

= Parallel programming model: a parallel programming pattern
— Bulk synchronous, SIMD, message-passing...

= Parallel programming system: a language or library that
implements one or multiple models

— MPI+C, OpenMP...

= MPI+C implements multiple models (message-passing, bulk
synchronous...)

= MPI+OpenMP is a hybrid system

CCGrid13

7.\ May 2013

Why Did MPI Succeed?

Beyond the expectations of its designers

CCGrid13

May 2013

Some Pragmatic Reasons for the Success of MPI

= Clear need: Each of the vendors had its own message-passing
library; there were no major differences between them, and no
significant competitive advantage. Users wanted portability

— Same was true of OpenMP

= Quick implementation: MPI libraries were available as soon
as the standard was ready
— As distinct from HPF [rise & fall of HPF]

= Cheap: A few people-years (at most) to port MPI to a new
platform

CCGrid13

é May 2013

Some Technical Reasons for the Success of MPI

= Good performance: HPC programming is about performance. An
HPC programming system must provide to the user the raw HW
performance of the HW. MPI mostly did that

= Performance portability: Same optimizations (reduce
communication volume, aggregate communication, use
collectives, overlap computation and communication) are good
for any platform

— This was a major weakness of HPF [rise & fall of HPF]
= Performance transparency: Few surprises; a simple

performance model (e.g., postal model — a+bm) predicts
well communication performance most of the time

— Another weakness of HPF

CCGrid13

é May 2013

How About Productivity?

= Coding productivity is much overrated: A relative small fraction of
programming effort is coding: Debugging, tuning, testing &
validating are where most of the time is spent. MPI is not worse
than existing alternatives in these aspects of code development.

= MPI code is very small fraction of a large scientific framework

= Programmer productivity depends on entire tool chain (compiler,
debugger, performance tools, etc.). It is easier to build a tool
chain for a communication library than for a new language

CCGrid13

10
é May 2013

Some Things MPI Got Right

= Communicators
— Support for time and space multiplexing

= Collective operations
= QOrthogonal, object-oriented design

Application

Library

Application

‘ CCGrid13
11
s) _ May 2013

MPI Forever?

= MPI will continue to be used in the exascale time frame

= MPI may increasingly become a performance bottleneck at
exascale

= |t's not MPI; it is MPI+X, where X is used for node
programming. The main problem is a lack of adequate X.

CCGrid13

12
S May 2013

It is Hard to Kill MPI

= By now, there are 10s of millions LOCs that use MPI
= MPI continues to improve (MPI3)

= MPI performance can still be improved in various ways (e.g.,
JIT specialization of MPI calls)

= MPI scalability can still be improved in a variety of ways
(e.g., distributed data structures)

= The number of nodes in future exascale systems will not be
significantly higher than the current numbers

CCGrid13

13
é May 2013

What’s Needed for a New System to
Succeed?

May 2013

Factors for Success

= Compelling need
— MPI runs out of steam (?)
— OpenMP runs out of steam (!)
— MPI+OpenMP+Cuda+... becomes too baroque

— Fault tolerance and power management require new
programming models

= Solution to backward compatibility problem
= Limited implementation cost & fast deployment
= Community support (?)

CCGrid13

4 15
S May 2013

Potential Problems with MPI

= Software overhead for communication
— Strong scaling requires finer granularity
= MPI processes with hundreds of threads — serial bottlenecks

= |nterface to node programming models: The basic design of MPI
is for a single threaded process; tasks are not MPI entities

= |nterface to heterogeneous nodes (NUMA, deep memory
hierarchy, possibly non-coherent memory)

= Fault tolerance
— No good exception model

Good rDMA leverage (low-overhead one-sided
communication)

CCGrid13

16
é May 2013

Potential Problems with OpenMP

= No support for locality — flat memory model

= Parallelism is most naturally expressed using fine grain
parallelism (parallel loops) and serializing constructs (locks, serial
sections)

= Support for heterogeneity is lacking:

— OpenACC has narrow view of heterogeneous architecture (two,
noncoherent memory spaces)

— No support for NUMA (memory heterogeneity)
(There is significant uncertainty on the future node architecture)

CCGrid13

17
é May 2013

New Needs

= Current mental picture of parallel computation: Equal
computation effort means equal computation time

— Significant effort invested to make this true: jitter avoidance

= Mental picture is likely to be inaccurate in the future
— Power management is local
— Fault correction is local

= Global synchronization is evil!

CCGrid13

18
@ May 2013

What Do We Need in a Good HPC
Programming System?

Our Focus

Domain-Specifc
programming system

Automated
mapping

(
|
|
|
|

Multiple Specialized (?)
Systems Software Stack

‘ CCGrid13 7
6_.‘

Specialized (?)
Software Stack

Domain-Specifc

programming system

Common low-level parallel
programming system

Specialized (?)
Software Stack

May 2013

20

Shared Memory Programming Model

Basics:

" Program expresses parallelism and dependencies (ordering constraint)
= Run-time maps execution threads so as to achieve load balance

= Global name space

= Communication is implied by referencing

= Data is migrated close to executing thread by caching hardware

= User reduces communication by ordering accesses so as to achieve
good temporal, spatial and thread locality

Incidentals:
= Shared memory programs suffer from races

= Shared memory programs are nondeterministic Coupler
= Lack of collective operations

" Lack of parallel teams

CCGrid13

21
6 May 2013

Distributed Memory Programming Model (for HPC)

Basics:

= Program distributes data, maps execution to data, and expresses
dependencies

= Communication is usually explicit, but can be implicit (PGAS)
— Explicit communication needed for performance
— User explicitly optimizes communication (no caching)
Incidentals:
= Lack of global name space
= Use of send-receive

CCGrid13

; 22
S May 2013

Hypothetical Future Architecture: (At Least) 3 Levels

= Assume core
heterogeneity
is transparent
to user
(alternative is
too
depressing...)

Core Core Core Core

Coherence domain Coherence domain

Core Core Core Core

. Coherence domain
Coherence domain

Node Node

CCGrid13
° _ May 2013

Possible Direction

= Need, for future nodes, a model intermediate between shared
memory and distributed memory

— Shared memory: global name space, implicit communication
and caching

— Distributed memory: control of data location and
communication aggregation

— With very good support for latency hiding and fine grain
parallelism

= Such a model could be used uniformly across the entire memory
hierarchy!

— With a different mix of hardware and software support

CCGrid13

24
é May 2013

Extending the Shared Memory Model Beyond
Coherence Domains - Caching in Memory

= Assume (to start with) a fixed partition of data to
“homes” (locales)

= Global name space: easy

= |mplicit communication (read/write): performance problem
— Need accessing data in large user-defined chunks ->

e User-defined “logical cache lines” (data structure, tile; data set
that can be moved together

e User (or compiler) inserted “prefetch/flush” instructions
(acquire/release access)

— Need latency hiding ->
e Prefetch or “concurrent multitasking”

CCGrid13

25
é May 2013

Living Without Coherence

= Scientific codes are often organized in successive phases where a
variable (a family of variables) is either exclusively updated or
shared during the entire phase. Examples include

— Particle codes (Barnes-Hut, molecular dynamics...)
— lterative solvers (finite element, red-black schemes..)

@ Need not track status of each “cache line”; software can effect
global changes at phase end

CCGrid13

y 26
7.\ May 2013

How This Compares to PGAS Languages?

= Added ability to cache and prefetch
— As distinct from copying
— Data changes location without changing name

= Added message driven task scheduling

— Necessary for hiding latency of reads in irregular, dynamic codes

CCGrid13

27
A May 2013

Is Such Model Useful?

= Facilitates writing dynamic, irregular code (e.g., Barnes-Hut)

= Can be used, without performance loss, by adding annotations
that enable early binding

CCGrid13

28
6 May 2013

Example: caching

= General case: “Logical cache line” defined as a user-provided
class

= Special case: Code for simple, frequently used tile types is
optimized & inlined (e.g., rectangular submatrices) [Chapel]

= General case: need dynamic space management and (possibly) an
additional indirection (often avoided via pointer swizzling)

= Special case: same remote data (e.g., halo) is repeatedly
accessed. Can preallocate local buffer and compile remote
references into local references (at compile time, for regular
halos, after data is read, for irregular halos)

CCGrid13

29
é May 2013

Thereisa Long List of Additional Issues

= How general are home partitions?
— Use of “owner compute” approach requires general partition
— Complex partitions lead to expensive address translation

= |sthe number of homes (locales) fixed?

= Can data homes migrate?

— No migration is a problem for load balancing and failure
recovery

— Usual approach to migration (virtualization &
overdecomposition) unnecessarily reduces granularity

= Can we update (parameterized) decomposition, rather than
virtualize locations?

CCGrid13

30
é May 2013

Thereisa Long List of Additional Issues (2)

= Local view of control or global view?
Forallion A[i] A[i] = foo(i)

— Transformation described in terms of global data structure
Foreach A.tile foo(tile)

— Transformation described in terms of local data structure (with
local references)

— There are strong, diverging opinions on which is better

= Hijerarchical data structures & hierarchical control
= Exception model

CCGrid13

y 31
S May 2013

