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Problem 

¥! Exascale	  resilience	  is	  “a	  black	  swan	  –	  the	  most	  difficult,	  under-‐
addressed	  issue	  facing	  HPC.”	  (ASCAC	  2011)	  

¥! Fear:	  a	  Exaflop/s	  system	  will	  fail	  so	  frequently	  that	  no	  useful	  
work	  will	  be	  possible	  

¥! DOE	  &	  DoD	  commissioned	  several	  reports	  
Ð! Inter-‐Agency	  Workshop	  on	  HPC	  Resilience	  at	  Extreme	  Scale	  
h[p://ins0tute.lanl.gov/resilience/docs/Inter-‐
AgencyResilienceReport.pdf	  	  (Feb	  2012)	  
Ð!U.S.	  Department	  of	  Energy	  Fault	  Management	  Workshop	  
h[p://shadow.dyndns.info/publica0ons/
geist12department.pdf	  (June	  2012)	  
Ð!…	  
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Addressing Failures in Exascale Computing 

¥! Week-‐long	  workshop	  summer	  2012	  
!

"#!$%&',	  R.	  W.	  Wisniewski,	  J.	  A.	  Abraham,	  S.	  V.	  Adve,	  S.	  Bagchi,	  P.	  
Balaji,	  J.	  Belak,	  P.	  Bose,	  F.	  Cappello,	  B.	  Carlson,	  A.	  A.	  Chien,	  P.	  
Coteus,	  N.	  A.	  Debardeleben,	  P.	  Diniz,	  C.	  Engelmann,	  M.	  Erez,	  S.	  
Fazzari,	  A.	  Geist,	  R.	  Gupta,	  F.	  Johnson.	  S.	  Krishnamoorthy,	  S.	  
Leyffer,	  D.	  Liberty,	  S.	  Mitra,	  T.	  Munson,	  R.	  Schreiber,	  J.	  Stearley,	  E.	  
V.	  Hensbergen!

¥! Argonne	  Report	  ANL/MCS-‐TM-‐332,	  April	  2013.	  
h[p://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-‐
TM-‐332.pdf	  
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SUPERCOMPUTING TODAY 
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Argonne Mira (IBM -- Blue Gene/Q) 

¥! 48K	  nodes	  	  
Ð!1.6	  GHz	  16-‐way	  core	  	  
Ð!16	  GB	  RAM	  	  

¥! 768K	  cores	  
¥! 0.768	  PB	  DRAM	  
¥! 35	  PB	  Disk	  storage	  	  

Ð!240	  GB/s	  bandwidth	  

¥! 10	  Petaflop/s	  	  	  (1016	  flop/s)	  	  peak	  
performance	  

¥! LLNL	  Sequoia	  is	  	  Mira×2	  
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Oak Ridge Titan 

¥! 18,688	  nodes	  	  
Ð!2.2	  GHz	  AMD	  16-‐core	  
Opteron	  6274	  processor	  	  

Ð!32GB	  DRAM	  
¥! 18,688	  GPUs	  

Ð!NVIDIA	  Kepler	  K20	  	  
Ð!6	  GB	  DRAM	  

¥! 299K	  CPU	  cores	  
¥! 0.71	  PB	  DRAM	  

¥! 20	  Petaflop/s	  peak	  performance	  
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How Reliable Are They? 

¥! MTBF	  of	  1-‐7	  days	  (failure	  =	  lost	  job)	  
Ð!Global	  system	  crashes	  ~1/10	  of	  errors	  
Ð!This	  does	  not	  account	  for	  failures	  due	  to	  bugs	  in	  
user	  code!	  

¥! 60%-‐80%	  of	  failures	  are	  due	  to	  sorware	  
Ð!Mostly	  in	  the	  parallel	  file	  system	  
Ð!Mostly	  “performance	  bugs”	  (thrashing,	  0me-‐outs)	  

¥! Many	  complex,	  cascading	  errors	  
Ð!Root	  cause	  analysis	  is	  imperfect	  and	  very	  0me	  
consuming	  

¥! No	  Byzan0ne	  errors	  
¥! No	  silent	  errors	  (??)	  
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How do we Handle Failures? 

¥! System:	  Reboot,	  repair	  
Ð!MTTR:	  3-‐24	  hours	  

¥! Applica0on:	  Checkpoint,	  restart	  
Ð!User	  checkpoint/restart	  
Ð!~15-‐20	  minutes	  checkpoint	  or	  restart	  

¥! Op0mal	  checkpoint	  interval	  
	  	  	  
¥! U0liza0on	  	  
¥! Chkpt	  =	  15	  min,	  MTBF	  =	  24	  hrs	  =>	  U0l	  ≈	  85%	  
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≈ 2×Chkpt ×MTBF
≈1− 2×Chkpt /MTBF

! 1" 2#Chkpt / MTBF



Utilization, Assuming Poisson Failure Model 
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Chckpt/MTBF 



Core Assumptions 

¥! Checkpoint	  0me	  <<	  MTBF	  	  	  	  (~MTBF/100)	  

¥! Recovery	  0me	  <	  MTBF	  (~MTBF/10)	  

¥! Errors	  are	  detected	  quickly	  and	  are	  not	  Byzan0ne	  
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SUPERCOMPUTING IN 10 YEARS 
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Exascale Design Point 
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System	  memory	   1.6	  PB	  
(16*96*1024)	  	  

32	  -‐	  64	  PB! O(10)	  

Node	  performance	   	  	  205	  GF/s	  
(16*1.6GHz*8)	  

1.2	  	  or	  15TF/s	   O(10)	  –	  O(100)	  

Node	  memory	  BW	   42.6	  GB/s	   2	  -‐	  4TB/s! O(1000)	  

Node	  concurrency	   64	  Threads	   O(1k)	  or	  10k	   O(100)	  –	  O(1000)	  

Total	  Node	  Interconnect	  BW	   20	  GB/s	   200-‐400GB/s	   O(10)	  

System	  size	  (nodes)	   98,304	  
(96*1024)	  

O(100,000)	  or	  O(1M)	   O(100)	  –	  O(1000)	  

Total	  concurrency	   5.97	  M	   O(billion)	   O(1,000)	  

MTTI	   4	  days	   O(<1	  day)	   -‐	  O(10)	  

Both price and power envelopes may be too aggressive! 



Going Forward: Risks 

¥! More	  complex	  applica0on	  codes	  -‐>	  more	  user	  errors	  
¥! More	  complex	  system	  codes	  -‐>	  more	  “logic”	  system	  errors	  

Ð!power	  management,	  error	  handling,	  asynchronous	  
algorithms,	  dynamic	  resource	  provisioning,	  complex	  
workflows…	  

¥! Larger	  system	  -‐>	  more	  “performance”	  system	  errors	  
¥! More	  hardware	  -‐>	  more	  hardware	  errors	  
¥! More	  failure-‐prone	  hardware	  -‐>	  More	  hardware	  errors	  

Ð!Smaller	  feature	  size	  -‐>	  more	  variance,	  faster	  aging	  
Ð!Sub-‐threshold	  logic	  -‐>	  more	  bit	  upsets,	  more	  mul0ple-‐bit	  
upsets	  
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RESILIENCE AT EXASCALE 
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Core Assumptions 

¥! Checkpoint	  0me	  <<	  MTBF	  	  	  	  (~MTBF/100)	  

¥! Recovery	  0me	  <	  MTBF	  (~MTBF/10)	  

¥! Errors	  are	  detected	  quickly	  and	  are	  not	  Byzan0ne	  
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Silent Data Corruption 

¥! Reasonably	  well	  studied:	  Impact	  of	  cosmic	  radia0on	  
¥! Reasonably	  easy	  to	  protect:	  DRAM,	  SRAM,	  regular	  arrays	  of	  

storage)	  
Ð!Add	  more	  ECC	  bits	  and	  interleave	  

¥! Hard	  to	  protect:	  random	  logic	  (decoders,	  ALUs…)	  
¥! However:	  	  

Ð!Most	  (>99%)	  bit	  flips	  have	  no	  effect	  (our	  HW	  is	  inefficient?)	  	  
Ð!Effect	  is	  oren	  a	  hard	  SW	  failure	  
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Hardware Error Detection: Assumptions 
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3.4.1 Compute Node Soft Errors and Failures

Soft errors and failures in the compute node (processor and memory only; network, power, and cooling
discussed later in this section) are a result of events that are entirely external to the system and cannot be
replicated. Furthermore, soft faults are transient in nature and leave no lasting impact on hardware. By far
the most signiÞcant source of soft faults are energetic particles that interact with the silicon substrate and
either ßip the state of a storage element or disrupt the operation of a combinational logic circuit. The two
common sources of particle strike faults are alpha particles that originate within the package and high-energy
neutrons. When a high-energy neutron interacts with the silicon die, it creates a stream of secondary charged
particles. These charged particles then further interact with the semi-conductor material, freeing electron-
hole pairs. If the charged particle creates the electron-hole pairs within the active region of a transistor, a
current pulse is formed. This current pulse can directly change the state of a storage device or can manifest
as a wrong value at the end of a combinational logic chain. Alpha particles are charged and may directly
create electron-hole pairs.

To model the impact a particle strike has on a compute node, we model the effect on each node compo-
nent separately, namely: SRAM, latches, combinational logic, DRAM, and NV-RAM. We then determine a
rough estimates for the number of units of each component within the node. We use this estimate to provide
a very rough order-of-magnitude type fault rates for the compute node. We also brießy mention how such
faults are handled in processors today and discuss how advances in process technology are expected to affect
these soft faults. We make projections for the impact of particle-strike soft errors on a future11nm node,
as well as present an estimate of the overhead/error-rate tradeoffs at the hardware level. The estimates are
based on the models below and on some assumptions about the components of a node, as shown in Table 2.

A few important caveats about the models and projections:

¥ The numbers summarized in the table below do not include hard errors, including intermittent hard
errors. We expect intermittent hard errors and failures in hardware to be a signiÞcant contributor to
software-visible errors and failures.

¥ We do not have access to good models for the susceptibility of near-threshold circuits and do not
consider such designs.

¥ We give only a rough, order-of-magnitude at best, type estimate; many important factors remain
unknown with respect to the11nm technology node.

Table 2: Summary of assumptions on the components of a45nm node and estimates of scaling to11nm.
45nm 11nm

Cores 8 128

Scattered latches per core 200, 000 200, 000

Scattered latchs in uncore relative to cores !
ncores " 1.25 = 0.44

!
ncores " 1.25 = 0.11

FIT per latch 10! 1 10! 1

Arrays per core (MB) 1 1

FIT per SRAM cell 10! 4 10! 4

Logic FIT / latch FIT 0.1 # 0.5 0.1 # 0.5

DRAM FIT (per node) 50 50
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Hardware Error Detection: Analysis 
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Array interleaving and SECDED
(Baseline)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 20000 1 1000

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0 4

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1000 - 5000 100000 10 - 100 5000 - 20000 10 - 50 500 - 5000

Array interleaving and ¿SECDED
(11nm overhead: ⇠ 1% area and < 5% power)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1500 - 6500 100000 10 - 50 500 - 5000 10 - 50 100 - 500

Array interleaving and ¿SECDED + latch parity
(45nm overhead ⇠ 10%; 11nm overhead: ⇠ 20% area and ⇠ 25% power)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 20 400 0.01 0.5

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 0 0 0.1 0.0 0.100 0.001

Total 1500 - 6500 100000 25 - 100 2000 - 10000 1 5 - 20

Table 3: Summary of per-processor particle-strike soft error characteristics within a compute node (sea level,
equator). Note that other sources of transient faults cannot be ignored.

SRAM. Large SRAM arrays dominate the raw particle-strike fault rate of a processor silicon die. When a
particle strike releases charge within an active region of a transistor in an SRAM cell, the charge collected
may exceed the charge required to change the value stored in the cell, causing a single event upset(SEU). An
SEU may impact a single SRAM cell or may change the values of multiple adjacent cells. Such multi-cell
upsets(MCUs) are also called burst errors. A reasonable ball-park number for SRAM particle-strike upset
rate is 1 upset every 107 hours for 1Mb of capacity, which is a rate of 10�4 FIT/bit. Our best estimates
indicate that the SEU rate for SRAM will remain roughly constant as technology scales. While many
complex phenomena impact susceptibility, the current roadmap of changes to devices, operating voltage,
and scale, do not point to extreme changes in susceptibility. What is expected to change is the distribution
of MCUs, with a single upset more likely to affect longer burst of cells at smaller scales.

Because the raw FIT/chip from SRAM is high (estimated at roughly 0.5 upsets per year per chip, or
multiple upsets an hour in a large-scale HPC system), large arrays are protected with error detection and
error correction capabilities. An approach in use today is a combination of physical word interleaving
coupled with an error detection code (EDC) or with error checking and correcting (ECC) mechanisms.
Given the distribution of MCUs today, 4-way interleaving with SECDED capabilities per array line are
sufficient. Stronger capabilities will likely be needed in the future, but their energy and area overhead is
expected to be low (see Table ??). Note that our estimates assume that 4-bit or longer bursts increase from
1%of all SEUs to 10%or higher between 45nm and 11nm technology and that the rate of bursts of 8 bits or
longer increases from 0.01%of all SEUs to 1% of all SEUs.

Note that alternative storage technology with much lower particle-strike error rates is possible. Some
current processors use embedded DRAM for large arrays and there is a possibility that future processors
will use on-chip arrays of non-volatile storage. Embedded DRAM has a 100 times or more lower error rate
than SRAM. Non-volatile storage cells are immune to particle strikes, but do display some soft error fault
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Summary of (Rough) Analysis  

¥! If	  no	  new	  technology	  is	  deployed	  can	  have	  up	  to	  one	  undetected	  
error	  per	  hour	  

¥! With	  addi0onal	  circuitry	  could	  get	  down	  to	  one	  undetected	  
error	  per	  100-‐1,000	  hours	  (week	  –	  months)	  
Ð!Similar	  to	  what	  we	  have	  now!	  

¥! With	  no	  new	  inven0on,	  cost	  is	  about	  20%	  addi0onal	  circuits	  and	  
25%	  addi0onal	  power	  
Ð!New	  inven0on	  may	  reduce	  overhead	  

¥! Not	  clear	  required	  components	  will	  be	  available	  at	  low	  cost	  
Ð!Market	  for	  highly	  reliable	  servers	  is	  not	  growing	  
Ð!Fastest	  growing	  markets	  (mobile,	  consumer	  products,	  
clouds)	  requires	  low	  power	  &	  low	  cost	  but	  do	  not	  require	  
high	  availability	  
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SW Alternatives to HW Error Detection 

¥! Replicate	  execu0on	  (for	  cri0cal,	  rarely	  executed	  code	  –	  e.g.,	  system	  
code)	  
Ð! Can	  cost	  <<	  x2,	  with	  architecture/compiler	  support	  (assuming	  
memory	  is	  trusted)	  

¥! Add	  (via	  compila0on)	  program	  level	  property	  checks	  
Ð! SWAT	  project	  (S.	  Adve):	  85%	  coverage	  of	  SDCs	  with	  10%	  overhead	  

¥! Add	  error	  detec0on	  to	  applica0on	  code	  (e.g.,	  redundancy	  in	  dense	  
linear	  algebra)	  

¥! Develop	  fault-‐tolerant	  algorithms	  
¥! Hypothesis:	  bit	  flips	  	  

Ð! Either	  destroy	  the	  compute	  model	  abstrac0on	  (wrong	  pointers,	  
wrong	  jump	  addresses)	  –	  and	  can	  very	  oren	  be	  detected	  

Ð!Or	  can	  be	  treated	  as	  noise	  in	  the	  computa0on	  –	  and	  handled	  
algorithmically	  
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Core Assumptions 

¥! Checkpoint	  0me	  <<	  MTBF	  	  	  	  (~MTBF/100)	  

¥! Recovery	  0me	  <	  MTBF	  (~MTBF/10)	  	  [<<	  1	  hour]	  

¥! Errors	  are	  detected	  quickly	  and	  are	  not	  Byzan0ne	  
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Recovery Time 

¥! Localized	  failure	  (e.g.,	  node	  failure)	  
Ð!Replace	  node	  and	  restart	  applica0on	  from	  checkpoint	  –	  
seconds	  –	  minutes	  

¥! Global	  system	  crash	  
Ð!Switch,	  parallel	  file	  system,	  resource	  manager,	  monitoring	  &	  
control	  SW…	  

Ð!Oren	  combina0on	  of	  HW	  failure	  and	  SW	  “performance	  bug”	  
Ð!May	  take	  hours	  to	  recover	  

¥! Need	  global	  OS	  services	  that	  are	  more	  resilient	  or	  recover	  much	  
faster	  (OS/R	  proposal)	  
Ð!APIs	  for	  resilience	  (reliable	  execu0on,	  reliable	  storage)	  
Ð!Hierarchical	  error	  handling	  (fault	  containment)	  
Ð!Reliable	  pub-‐sub	  service	  for	  reliability-‐related	  events	  
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Core Assumptions 

¥! Checkpoint	  0me	  <<	  MTBF	  	  	  	  (~MTBF/100)	  	  [<	  1	  min]	  

¥! Recovery	  0me	  <	  MTBF	  (~MTBF/10)	  

¥! Errors	  are	  detected	  quickly	  and	  are	  not	  Byzan0ne	  
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Hybrid Checkpoint 

¥! Fast,	  frequent	  checkpoints	  to	  take	  care	  of	  frequent	  failures;	  
slower,	  less	  frequent	  checkpoint	  to	  take	  care	  of	  less	  frequent	  
failures	  

¥! Checkpoint	  in	  memory:	  	  handles	  transient	  errors	  
Ð!Seconds;	  	  need	  more	  memory	  (~50%)	  but	  no	  significant	  
addi0onal	  power	  

¥! Checkpoint	  in	  NVRAM	  memory:	  can	  handle	  node	  failure,	  if	  “twin	  
tailed”	  

¥! Checkpoint	  in	  memory	  +	  RAID5	  –	  handle	  node	  failures	  
Ð!~3	  minutes;	  ~50%	  more	  memory	  

¥! Checkpoint	  in	  remote	  NVRAM	  (“burst	  buffers”)	  
¥! Checkpoint	  on	  disk	  
¥! Doable	  –	  but	  may	  be	  expensive	  and	  may	  be	  hard	  if	  node	  

memory	  is	  much	  larger	  (LBNL,	  ANL)	  
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Avoid Global Checkpoints 

¥! Cluster	  checkpoint	  +	  logging	  
Ð!Can	  avoid	  domino	  effect	  of	  uncoordinated	  checkpoints	  for	  
send-‐determinis0c	  apps	  

¥! Save	  energy	  and	  recovery	  0me	  
¥! Containment	  domains	  	  
¥! Algorithmic	  error	  correc0on	  

Ð!Use	  redundancy	  in	  computa0on	  state	  
¥! …	  

¥! Are	  these	  techniques	  general?	  	  
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Predict and Avoid Failures 
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Fig. 7. Percentage of sequences propagating on different racks, midplanes
and nodes

Fig. 8. Prediction time window

propagate on multiple locations. For example the sequence:
can not get assembly information for node card
linkCard power module * is not accessible
no power module * found found on link card
gives information about a node card problem that is not fully
functional. Events marked as ”severe” and ”failure” occur after
around one hour and report that the link card module is not
accessible from the same midplane and that the link card is
not found. The sequence is generated by the same node for
all its occurrences in the log.

For 75% of correlations that do not propagate, the prediction
system does not need to worry about finding the right location
that will be affected by the failure. However, for the other 25%
that propagate, a wrong prediction will lead to a decrease in
both precision and recall. We analyzed this a little further and
observed that for most propagation sequences the initiating
node (the one where the first symptom occurs) is included in
the set of nodes affected by the failure. This leads us to believe
that the recall of the prediction system will be more affected
by the location predictor than its precision.

VI. DISSECTING PREDICTION

Figure 8 shows an overview of the prediction process. The
observation window is used for the outlier detection. The
analysis time represent the overhead of our method in making
a prediction: the execution time for detecting the outlier,
triggering a correlation sequence and finding the correspond-
ing locations. The prediction window is the time delay until
the predicted event will occur in the system. The prediction
window starts right after the observation point but is visible
only at the end of the analysis time.

In the next section we analyze the prediction based on
the visible prediction window and then propose an analytical
model for the impact of our results on checkpointing strategies.

Prediction method Precision Recall Seq used Pred failures
ELSA hybrid 91.2% 45.8% 62 (96.8%) 603
ELSA signal 88.1% 40.5% 117 (92.8%) 534
Data mining 91.9% 15.7% 39 (95.1%) 207

TABLE II
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

The metrics used for evaluating prediction performance are
prediction and recall:

• Precision is the fraction of failure predictions that turn
out to be correct.

• Recall is the fraction of failures that are predicted.

A. Analysis

In the on-line phase the analysis is composed of the outlier
detection and the module that triggers the predictions after
inspecting the correlation chains. We computed the execution
time for different regimes: during the normal execution of the
system and during the periods that put the most stress on the
analysis, specifically periods with bursts of messages. If the
incoming event type is already in an active correlation list, we
do not investigate it further since it will not give us additional
information.

The systems we analyzed generate in average 5 messages
per second and during bursts of messages the logs present
around 100 messages per second. The analysis window is
negligible in the first case and around 2.5 second in the second.
The worst case seen for these systems was 8.43 seconds during
an NFS failure on Mercury. By taking this analysis window
into consideration we examined how many correlation chains
are actually used for predicting failures and which failures are
we able to detect before they occur.

Our previous work showed 43% recall and 93% precision
for the LANL system by using a purely signal analysis
approach. However, at that point, we were not interested about
predicting the location where the fault might occur. In this
paper, we focus on both location and the prediction window.
We compute the results only for the BlueGene/L systems and
guided our metrics based on the severity field offered by the
system.

We analyzed the number of sequences found with our initial
signal analysis approach, the data mining algorithm described
in [29] and the present hybrid method. Signal analysis gives
a larger number of sequences, in general having a small
length, making the analysis window higher. Also, the on-
line outlier detection puts extra stress on the analysis making
the analysis window exceed 30 seconds when the system
experiences bursts. Due to our data mining extraction of multi-
event correlation we were able to keep only the most frequent
subset making the on-line analysis work on a much lighter
correlation set. On the other extreme, the data mining approach
looses correlations between signals of different types, so even
if the correlation set is much smaller than our hybrid method,
the false negative count is higher.

example if 25% of errors are predicted, the new mttf is4mttf
3 .

The rest of the failures are predicted events and have a mean
time between them ofmttf

N seconds.
By applying the new mttf for the un-predicted failures to

equation (2), the new optimal checkpoint interval becomes
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!
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(3)

The Þrst two terms from equation (1) need to change to
consider only the un-predicted failures since for all the others
preventive actions will be taken. By adding the Þrst two terms
and incorporating the value for the checkpoint interval from
equation (3), the minimum waste becomes:
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The last term from equation (1) will not change since for all
failures, both predicted and un-predicted, the application needs
to be restarted. Additional to the waste from (4), each time
an error is predicted, the application will take a checkpoint
and it will waste the time execution between this checkpoint
is taken to the occurrence of the failure. This value depends
on the system the application is running on and can range
between a few seconds to even one hour. However, for the
systems we analyzed, in general, the time delay is very low
and for our model we consider that is negligible compared to
the checkpointing time. We add the waste of C seconds for
each predicted failure, which happens everymttf

N seconds.
After adding this waste equation (4) becomes:
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In the ideal case, when N=1, the minimum waste is equal to
the time to checkpoint right before every failure and the time
to restart after every failure. The formula assumes a perfect
precision. In case the precision is P, the waste value must
also take into consideration the cases when the prediction
is wrong. The predicted faults happen everymttf

N seconds
and they represent P of total predictions. This means that
the rest of (1-P) false positives predictions will happen every

P
1! P

mttf
N seconds. Each time a false positive is predicted, a

checkpointing is taken that must be added to the total waste
from equation (5):
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As an example, we consider the values used by [34] to
characterize current systems: R = 5, D = 1 in minutes and
study two values for the time to checkpoint: C=1 minute and
from [25] C=10 seconds. We computed the gain from using
the prediction offered by our hybrid method with different
precision and recall values and for different MTTFs. Table III

C Precision Recall MTTF for the whole system Waste gain
1min 92 20 one day 9.13%
1min 92 36 one day 17.33%
10s 92 36 one day 12.09%
10s 92 45 one day 15.63%

1min 92 50 5h 21.74%
10s 92 65 5h 24.78%

TABLE III
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

presents the results. The Þrst 4 cases present numbers from real
systems and checkpointing strategies. Interestingly, for future
systems with a MFFT of 5h if the prediction can provide a
recall over 50% then the waist time decreases by more than
20%. For the future, we plan to combine a checkpointing
strategy with our prediction and study its effectiveness in real
HPC systems.

VII. C ONCLUSION

This paper investigates a novel way of analyzing log Þles
from large-scale systems, by combining two different analysis
techniques: data mining and signal processing and using the
advantages given by both. We use signal analysis concepts
for shaping the normal behaviour of each event type and of
the whole system and characterizing the way faults affect
them. This way the models we use are more realistic in that
they take into account the different behaviour of the events
during failure free execution and when failures occur. At the
same time we use data mining algorithms for analyzing the
correlations between these behaviors since these algorithms
prove themselves more suited in characterizing the interactions
between different high dimensionality sets than the cross
correlation function offered by signal analysis.

In our experiments we show that a more realistic model,
like the one obtained with the hybrid method, inßuences the
prediction results and in the end the efÞcacy of fault tolerance
algorithms is improved. We investigated both the lag time
between the prediction moment and the time of occurrence
for the actual failure, taking into consideration the analysis
time, and concluded that the proposed model could allow
proactive actions to be taken. Moreover, since the location
of an error in an important part of a prediction system, we
included in our prediction location analysis and studied its
impact on the results. We will focus in the future on a more
detailed analysis of different error types for which our system
has a low recall. Also, we plan to study to a wider extend, the
practical way the prediction system inßuences current fault
tolerance mechanisms.
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types of signals: periodic, noise and silent. Figure 1 presents
the three types and the possible cause for each type.

We observed that a fault trigger in the system does not have
a consistent representation in the logs. For example, a memory
failure will cause the faulty module to generate a large number
of messages. Conversely, in case of a node crash the error
will be characterized by a lack of notiÞcations. Data mining
algorithms in general assume that faults manifest themselfs in
the same way and in consequence fail to handle more than
one type behaviors.

For example, even though silent signals represent the ma-
jority of event types, data mining algorithms fail to extract
the correlation between them and other types of signals. This
affects fault prediction in both the total number of faults seen
by the method and in the time delay offered between the
prediction and the actual occurrence of the fault.

Signal analysis methods concepts can handle all three signal
types, and thus provide a larger set of correlations that can be
used for prediction. However, data mining algorithms are more
suited in characterizing correlations between different high
dimensionality sets than the cross correlation function offered
by signal analysis. Data mining is a powerful technology that
converts raw data into an understandable and actionable form,
which can then be used to predict future trends or provide
meaning to historical events.

Additionally, outlier detection has a rich research history
in incorporating both statistical and data mining methods for
different types of datasets. Moreover, they are able to implic-
itly adapt to changes in the dataset and to apply threshold
based distance measures separating outliers from the bulk of
good observations. In this paper, we combine the advantages
of both methods in order to offer a hybrid approach capable of
characterizing different behaviors given by events generated by
a HPC system and providing an adaptive forecasting method
by using latest data mining techniques.

In the following sections we present the methodology used
for preprocessing the log Þles and extracting the signals and
then we introduce the novel hybrid method that combines
signal analysis concepts with data mining techniques for
outlier detection and correlation extraction. An overview of
the methodology is presented in Þgure 2.

A. Preprocessing

Log Þles generated by large HPC system contain million
of message lines, making their manual analysis impossible.
Moreover, the format in which messages are generated is not
structured and differs between different system and sometimes
even between different components of the same machine. In
order to bring structure to our analysis, we extract the descrip-
tion of all generated messages. These descriptions represent
the characterization of different events used by the system.
Also, as software changes with versions, bug Þxes or driver
updates, these descriptions are modiÞed to reßect the systemÕs
output at all time.

For this, we performed an initial pass over the logs Þles to
identify frequently occurring messages with similar syntactic

Fig. 2. Methodology overview of the hybrid approach

patterns. SpeciÞcally, we use the Hierarchical Event Log
Organizer [15] on the raw logs, resulting in a list of message
templates. These templates represent regular expressions that
describe a set of syntactically related messages and deÞne
different events in a system. In the on-line phase, we use
HELO on-line to keep the set of templates updated and
relevant to the output of the system.

For the rest of the paper, we analyze the generated events
separately by extracting a signal for each of them and char-
acterizing their behavior and the correlations between them.
Figure 1 presents one template or event type for each type
of signals. First, we extract the signal for each event type by
sampling the number of event occurrences for every time unit
and afterwards we use wavelets and Þltering to characterize
the normal behavior for each of them. In our experiments, we
use a sampling rate of 10 seconds for all signals. More details
about this step can be found in [4].

In the on-line phase, the signal creation module simply
concatenates the existing signals with the information received
from the input stream of events. For optimization purposes,
we only keep the last two months in the on-line module since
execution time is an important factor in this phase. The outline
monitor and the prediction system are applied on this trimmed
and updated set of signals.

B. Analysis Modules

1) Outlier detection:All analysis modules are novel hybrid
modules that combine data mining techniques with the previ-
ously extracted set of signals and their characterization. Since
the ofßine phase is not ran in real-time and the execution time
is not constrained, we did not optimize this step. For outlier
detection in the on-line phase, we use as input the adapted
set of signals and apply a simple data cleaning method for
identifying the erroneous data points.

We implement this step as a Þltering signal analysis module
so that is can be easily inserted between signal analysis
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Life with SDCs 
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The End 


