

Resilience at Exascale

Marc Snir Director, Mathematics and Computer Science Division Argonne National Laboratory

Professor, Dept. of Computer Science, UIUC

Problem

- Exascale resilience is "a black swan the most difficult, underaddressed issue facing HPC." (ASCAC 2011)
- Fear: a Exaflop/s system will fail so frequently that no useful work will be possible
- DOE & DoD commissioned several reports
 - Inter-Agency Workshop on HPC Resilience at Extreme Scale
 http://institute.lanl.gov/resilience/docs/Inter AgencyResilienceReport.pdf (Feb 2012)
 - U.S. Department of Energy Fault Management Workshop
 http://shadow.dyndns.info/publications/
 geist12department.pdf (June 2012)

Addressing Failures in Exascale Computing

• Week-long workshop summer 2012

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. Debardeleben, P. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson. S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, E. V. Hensbergen

 Argonne Report ANL/MCS-TM-332, April 2013.
 http://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-TM-332.pdf

SUPERCOMPUTING TODAY

Argonne Mira (IBM -- Blue Gene/Q)

- 48K nodes
 - 1.6 GHz 16-way core
 - 16 GB RAM
- 768K cores
- 0.768 PB DRAM
- 35 PB Disk storage
 - 240 GB/s bandwidth
- 10 Petaflop/s (10¹⁶ flop/s) peak performance

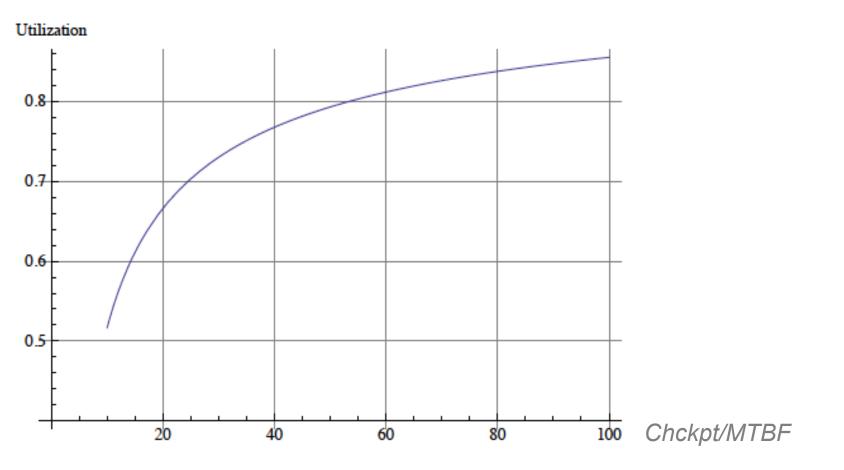
• LLNL Sequoia is Mira×2

Oak Ridge Titan

- 18,688 nodes
 - 2.2 GHz AMD 16-core
 Opteron 6274 processor
 - 32GB DRAM
- 18,688 GPUs
 - NVIDIA Kepler K20
 - 6 GB DRAM
- 299K CPU cores
- 0.71 PB DRAM
- 20 Petaflop/s peak performance

How Reliable Are They?

- MTBF of 1-7 days (failure = lost job)
 - Global system crashes ~1/10 of errors
 - This does not account for failures due to bugs in user code!
- 60%-80% of failures are due to software
 - Mostly in the parallel file system
 - Mostly "performance bugs" (thrashing, time-outs)
- Many complex, cascading errors
 - Root cause analysis is imperfect and very time consuming
- No Byzantine errors
- No silent errors (??)


How do we Handle Failures?

- System: Reboot, repair
 - MTTR: 3-24 hours
- Application: Checkpoint, restart
 - User checkpoint/restart
 - ~15-20 minutes checkpoint or restart

$$\approx 1 - \sqrt{2 \times Chkpt / MTBF}$$

- Optimal checkpoint interval $\approx \sqrt{2 \times Chkpt \times MTBF}$
- Utilization $\approx 1 \sqrt{2 \times Chkpt} / MTBF$
- Chkpt = 15 min, MTBF = 24 hrs => Util ≈ 85%

Utilization, Assuming Poisson Failure Model

Core Assumptions

- Checkpoint time << MTBF (~MTBF/100)
- Recovery time < MTBF (~MTBF/10)
- Errors are detected quickly and are not Byzantine

SUPERCOMPUTING IN 10 YEARS

Exascale Design Point

Systems	2012 BG/Q Computer	2020-2024	Difference Today & 2019
System peak	20 Pflop/s	1 Eflop/s	O(100)
Power	8.6 MW	~20 MW	
System memory	1.6 PB (16*96*1024)	32 - 64 PB	0(10)
Node performance	205 GF/s (16*1.6GHz*8)	1.2 or 15TF/s	O(10) – O(100)
Node memory BW	42.6 GB/s	2 - 4TB/s	O(1000)
Node concurrency	64 Threads	O(1k) or 10k	O(100) - O(1000)
Total Node Interconnect BW	20 GB/s	200-400GB/s	O(10)
System size (nodes)	98,304 (96*1024)	O(100,000) or O(1M)	O(100) – O(1000)
Total concurrency	5.97 M	O(billion)	O(1,000)
MTTI	4 days	O(<1 day)	- O(10)

Both price and power envelopes may be too aggressive!

Going Forward: Risks

- More complex application codes -> more user errors
- More complex system codes -> more "logic" system errors
 - power management, error handling, asynchronous algorithms, dynamic resource provisioning, complex workflows...
- Larger system -> more "performance" system errors
- More hardware -> more hardware errors
- More failure-prone hardware -> More hardware errors
 - Smaller feature size -> more variance, faster aging
 - Sub-threshold logic -> more bit upsets, more multiple-bit upsets

RESILIENCE AT EXASCALE

Core Assumptions

- Checkpoint time << MTBF (~MTBF/100)
- Recovery time < MTBF (~MTBF/10)
- Errors are detected quickly and are not Byzantine

15

Silent Data Corruption

- Reasonably well studied: Impact of cosmic radiation
- Reasonably easy to protect: DRAM, SRAM, regular arrays of storage)
 - Add more ECC bits and interleave
- Hard to protect: random logic (decoders, ALUs...)
- However:
 - Most (>99%) bit flips have no effect (our HW is inefficient?)
 - Effect is often a hard SW failure

Hardware Error Detection: Assumptions

	45nm	11nm
Cores	8	128
Scattered latches per core	200,000	200,000
Scattered latchs in uncore relative to cores	$\sqrt{n_{cores}} \times 1.25 = 0.44$	$\sqrt{n_{cores}} \times 1.25 = 0.11$
FIT per latch	10^{-1}	10^{-1}
Arrays per core (MB)	1	1
FIT per SRAM cell	10^{-4}	10^{-4}
Logic FIT / latch FIT	0.1 - 0.5	0.1 - 0.5
DRAM FIT (per node)	50	50

Hardware Error Detection: Analysis

	Array interleaving and SECDED (Baseline)						
	DCE [F	IT]	DUE [FIT]		UE [FIT]		
	45nm	11nm	45nm	11nm	45nm	11nm	
Arrays	5000	100000	50	20000	1	1000	
Scattered latches	200	4000	N/A	N/A	20	400	
Combinational logic	20	400	N/A	N/A	0	4	
DRAM	50	50	0.5	0.5	0.005	0.005	
Total	1000 - 5000	100000	10 - 100	5000 - 20000	10 - 50	500 - 5000	
	Array interleaving and ¿SECDED (11nm overhead: $\sim 1\%$ area and $< 5\%$ power)						
	DCE [F	IT]	DU	DUE [FIT]		UE [FIT]	
	45nm	11nm	45nm	11nm	45nm	11nm	
Arrays	5000	100000	50	1000	1	5	
Scattered latches	200	4000	N/A	N/A	20	400	
Combinational logic	20	400	N/A	N/A	0.2	5	
DRAM	50	50	0.5	0.5	0.005	0.005	
Total	1500 - 6500	100000	10 - 50	500 - 5000	10 - 50	100 - 500	
	Array interleaving and ;SECDED + latch parity (45nm overhead $\sim 10\%$; 11nm overhead: $\sim 20\%$ area and $\sim 25\%$ power)						
	DCE [FIT]		DUE [FIT]		UE [FIT]		
	45nm	11nm	45nm	11nm	45nm	11nm	
Arrays	5000	100000	50	1000	1	5	
Scattered latches	200	4000	20	400	0.01	0.5	
Combinational logic	20	400	N/A	N/A	0.2	5	
DRAM	0	0	0.1	0.0	0.100	0.001	
Total	1500 - 6500	100000	25 - 100	2000 - 10000	1	5 - 20	

Summary of (Rough) Analysis

- If no new technology is deployed can have up to one undetected error per hour
- With additional circuitry could get down to one undetected error per 100-1,000 hours (week months)
 - Similar to what we have now!
- With no new invention, cost is about 20% additional circuits and 25% additional power
 - New invention may reduce overhead
- Not clear required components will be available at low cost
 - Market for highly reliable servers is not growing
 - Fastest growing markets (mobile, consumer products, clouds) requires low power & low cost but do not require high availability

SW Alternatives to HW Error Detection

- Replicate execution (for critical, rarely executed code e.g., system code)
 - Can cost << x2, with architecture/compiler support (assuming memory is trusted)
- Add (via compilation) program level property checks
 - SWAT project (S. Adve): 85% coverage of SDCs with 10% overhead
- Add error detection to application code (e.g., redundancy in dense linear algebra)
- Develop fault-tolerant algorithms
- *Hypothesis*: bit flips
 - Either destroy the compute model abstraction (wrong pointers, wrong jump addresses) and can very often be detected
 - Or can be treated as noise in the computation and handled algorithmically

Core Assumptions

- Checkpoint time << MTBF (~MTBF/100)
- Recovery time < MTBF (~MTBF/10) [<< 1 hour]
- Errors are detected quickly and are not Byzantine

Recovery Time

- Localized failure (e.g., node failure)
 - Replace node and restart application from checkpoint seconds minutes
- Global system crash
 - Switch, parallel file system, resource manager, monitoring & control SW...
 - Often combination of HW failure and SW "performance bug"
 - May take hours to recover
- Need global OS services that are more resilient or recover much faster (OS/R proposal)
 - APIs for resilience (reliable execution, reliable storage)
 - Hierarchical error handling (fault containment)
 - Reliable pub-sub service for reliability-related events

Core Assumptions

- Checkpoint time << MTBF (~MTBF/100) [< 1 min]
- Recovery time < MTBF (~MTBF/10)
- Errors are detected quickly and are not Byzantine

Hybrid Checkpoint

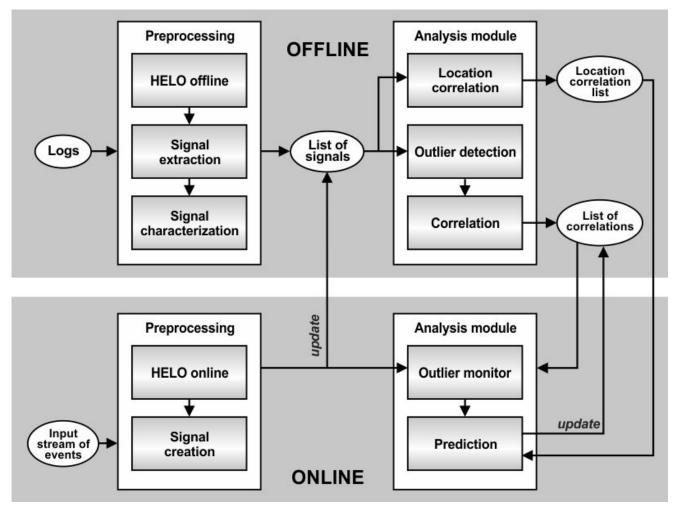
- Fast, frequent checkpoints to take care of frequent failures; slower, less frequent checkpoint to take care of less frequent failures
- Checkpoint in memory: handles transient errors
 - Seconds; need more memory (~50%) but no significant additional power
- Checkpoint in NVRAM memory: can handle node failure, if "twin tailed"
- Checkpoint in memory + RAID5 handle node failures
 - ~3 minutes; ~50% more memory
- Checkpoint in remote NVRAM ("burst buffers")
- Checkpoint on disk
- Doable but may be expensive and may be hard if node memory is much larger (LBNL, ANL)

Avoid Global Checkpoints

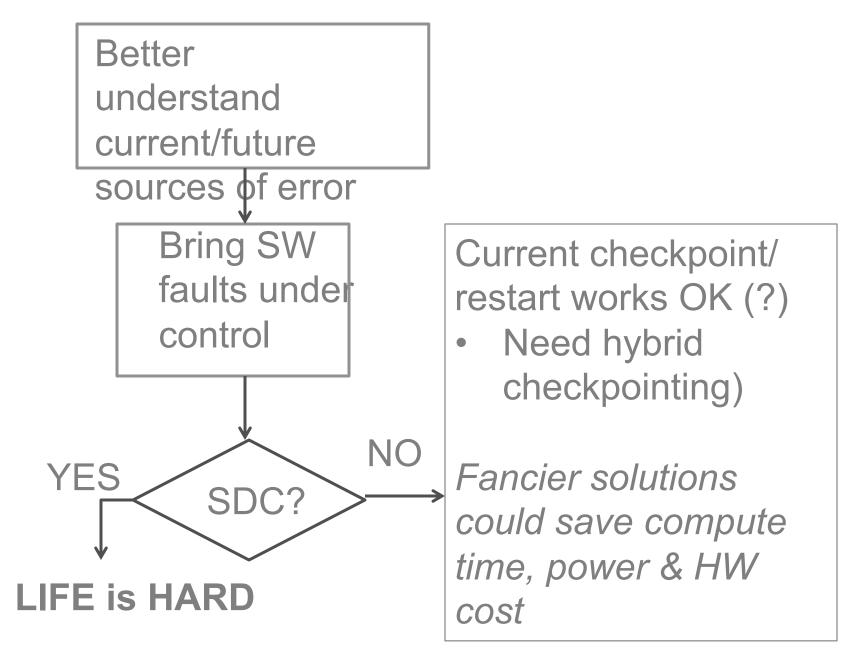
- Cluster checkpoint + logging
 - Can avoid domino effect of uncoordinated checkpoints for send-deterministic apps
- Save energy and recovery time
- Containment domains
- Algorithmic error correction
 - Use redundancy in computation state

• Are these techniques general?

Predict and Avoid Failures


Prediction method	Precision	Recall	Seq used	Pred failures
ELSA hybrid 🤇	91.2%	45.8%	62 (96.8%)	603
ELSA signal	88.1%	-40.5%	117 (92.8%)	534
Data mining	91.9%	15.7%	39 (95.1%)	207

С	Precision	Recall	MTTF for the whole system	Waste gain
1min	92	20	one day	9.13%
1min	92	36	one day	17.33%
10s	92	36	one day	12.09%
10s	92	45	one day	15.63%
1min	92	50	5h	21.74%
10s	92	65	5h	24.78%


Migrating processes when node failure is predicted can significantly improve utilization

Failure Prediction from Event Logs

Use a combination of signal analysis (to identify outliers) and datamining (to find correlations)

Gainaru, Cappello, Snir, Kramer (SC12)

Life with SDCs

- Build system SW immune to SDCs or build build good detectors and fast repair
- Build middleware (compilers, run-time) that can detect and correct "abstraction breaking" SDCs in user code
- Built application SW that detects SDCs in data or can tolerate them
- Build infrastructure to compose everything

