
Resilience at Exascale

Marc	 Snir	
Director,	 Mathema0cs	 and	
Computer	 Science	 Division	
Argonne	 Na0onal	 Laboratory	
	
Professor,	 Dept.	 of	 Computer	
Science,	 UIUC	
	

Problem

¥! Exascale	 resilience	 is	 “a	 black	 swan	 –	 the	 most	 difficult,	 under-‐
addressed	 issue	 facing	 HPC.”	 (ASCAC	 2011)	

¥! Fear:	 a	 Exaflop/s	 system	 will	 fail	 so	 frequently	 that	 no	 useful	
work	 will	 be	 possible	

¥! DOE	 &	 DoD	 commissioned	 several	 reports	
Ð! Inter-‐Agency	 Workshop	 on	 HPC	 Resilience	 at	 Extreme	 Scale	
h[p://ins0tute.lanl.gov/resilience/docs/Inter-‐
AgencyResilienceReport.pdf	 	 (Feb	 2012)	
Ð!U.S.	 Department	 of	 Energy	 Fault	 Management	 Workshop	
h[p://shadow.dyndns.info/publica0ons/
geist12department.pdf	 (June	 2012)	
Ð!…	

2	

Addressing Failures in Exascale Computing

¥! Week-‐long	 workshop	 summer	 2012	
!

"#!$%&',	 R.	 W.	 Wisniewski,	 J.	 A.	 Abraham,	 S.	 V.	 Adve,	 S.	 Bagchi,	 P.	
Balaji,	 J.	 Belak,	 P.	 Bose,	 F.	 Cappello,	 B.	 Carlson,	 A.	 A.	 Chien,	 P.	
Coteus,	 N.	 A.	 Debardeleben,	 P.	 Diniz,	 C.	 Engelmann,	 M.	 Erez,	 S.	
Fazzari,	 A.	 Geist,	 R.	 Gupta,	 F.	 Johnson.	 S.	 Krishnamoorthy,	 S.	
Leyffer,	 D.	 Liberty,	 S.	 Mitra,	 T.	 Munson,	 R.	 Schreiber,	 J.	 Stearley,	 E.	
V.	 Hensbergen!

¥! Argonne	 Report	 ANL/MCS-‐TM-‐332,	 April	 2013.	
h[p://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-‐
TM-‐332.pdf	

3	

SUPERCOMPUTING TODAY

4	

Argonne Mira (IBM -- Blue Gene/Q)

¥! 48K	 nodes	 	
Ð!1.6	 GHz	 16-‐way	 core	 	
Ð!16	 GB	 RAM	 	

¥! 768K	 cores	
¥! 0.768	 PB	 DRAM	
¥! 35	 PB	 Disk	 storage	 	

Ð!240	 GB/s	 bandwidth	

¥! 10	 Petaflop/s	 	 	 (1016	 flop/s)	 	 peak	
performance	

¥! LLNL	 Sequoia	 is	 	 Mira×2	

	
5	

Oak Ridge Titan

¥! 18,688	 nodes	 	
Ð!2.2	 GHz	 AMD	 16-‐core	
Opteron	 6274	 processor	 	

Ð!32GB	 DRAM	
¥! 18,688	 GPUs	

Ð!NVIDIA	 Kepler	 K20	 	
Ð!6	 GB	 DRAM	

¥! 299K	 CPU	 cores	
¥! 0.71	 PB	 DRAM	

¥! 20	 Petaflop/s	 peak	 performance	

6	

How Reliable Are They?

¥! MTBF	 of	 1-‐7	 days	 (failure	 =	 lost	 job)	
Ð!Global	 system	 crashes	 ~1/10	 of	 errors	
Ð!This	 does	 not	 account	 for	 failures	 due	 to	 bugs	 in	
user	 code!	

¥! 60%-‐80%	 of	 failures	 are	 due	 to	 sorware	
Ð!Mostly	 in	 the	 parallel	 file	 system	
Ð!Mostly	 “performance	 bugs”	 (thrashing,	 0me-‐outs)	

¥! Many	 complex,	 cascading	 errors	
Ð!Root	 cause	 analysis	 is	 imperfect	 and	 very	 0me	
consuming	

¥! No	 Byzan0ne	 errors	
¥! No	 silent	 errors	 (??)	

7	

How do we Handle Failures?

¥! System:	 Reboot,	 repair	
Ð!MTTR:	 3-‐24	 hours	

¥! Applica0on:	 Checkpoint,	 restart	
Ð!User	 checkpoint/restart	
Ð!~15-‐20	 minutes	 checkpoint	 or	 restart	

¥! Op0mal	 checkpoint	 interval	
	 	 	
¥! U0liza0on	 	
¥! Chkpt	 =	 15	 min,	 MTBF	 =	 24	 hrs	 =>	 U0l	 ≈	 85%	

8	

≈ 2×Chkpt ×MTBF
≈1− 2×Chkpt /MTBF

! 1" 2#Chkpt / MTBF

Utilization, Assuming Poisson Failure Model

9	

Chckpt/MTBF

Core Assumptions

¥! Checkpoint	 0me	 <<	 MTBF	 	 	 	 (~MTBF/100)	

¥! Recovery	 0me	 <	 MTBF	 (~MTBF/10)	

¥! Errors	 are	 detected	 quickly	 and	 are	 not	 Byzan0ne	

10	

SUPERCOMPUTING IN 10 YEARS

11	

Exascale Design Point

$()*+,)! -./-!
0123!

45,67*+'!

-.-.8-.-9!! :&;+'+%<+!
=5>?(!@!-./A!

$()*+,!6+?B! -.!CD562)! /!ED562)! FG/..H!

C5I+'! J#K!"L! M-.!"L!

System	 memory	 1.6	 PB	
(16*96*1024)	 	

32	 -‐	 64	 PB! O(10)	

Node	 performance	 	 	 205	 GF/s	
(16*1.6GHz*8)	

1.2	 	 or	 15TF/s	 O(10)	 –	 O(100)	

Node	 memory	 BW	 42.6	 GB/s	 2	 -‐	 4TB/s! O(1000)	

Node	 concurrency	 64	 Threads	 O(1k)	 or	 10k	 O(100)	 –	 O(1000)	

Total	 Node	 Interconnect	 BW	 20	 GB/s	 200-‐400GB/s	 O(10)	

System	 size	 (nodes)	 98,304	
(96*1024)	

O(100,000)	 or	 O(1M)	 O(100)	 –	 O(1000)	

Total	 concurrency	 5.97	 M	 O(billion)	 O(1,000)	

MTTI	 4	 days	 O(<1	 day)	 -‐	 O(10)	

Both price and power envelopes may be too aggressive!

Going Forward: Risks

¥! More	 complex	 applica0on	 codes	 -‐>	 more	 user	 errors	
¥! More	 complex	 system	 codes	 -‐>	 more	 “logic”	 system	 errors	

Ð!power	 management,	 error	 handling,	 asynchronous	
algorithms,	 dynamic	 resource	 provisioning,	 complex	
workflows…	

¥! Larger	 system	 -‐>	 more	 “performance”	 system	 errors	
¥! More	 hardware	 -‐>	 more	 hardware	 errors	
¥! More	 failure-‐prone	 hardware	 -‐>	 More	 hardware	 errors	

Ð!Smaller	 feature	 size	 -‐>	 more	 variance,	 faster	 aging	
Ð!Sub-‐threshold	 logic	 -‐>	 more	 bit	 upsets,	 more	 mul0ple-‐bit	
upsets	

13	

RESILIENCE AT EXASCALE

14	

Core Assumptions

¥! Checkpoint	 0me	 <<	 MTBF	 	 	 	 (~MTBF/100)	

¥! Recovery	 0me	 <	 MTBF	 (~MTBF/10)	

¥! Errors	 are	 detected	 quickly	 and	 are	 not	 Byzan0ne	

15	

Silent Data Corruption

¥! Reasonably	 well	 studied:	 Impact	 of	 cosmic	 radia0on	
¥! Reasonably	 easy	 to	 protect:	 DRAM,	 SRAM,	 regular	 arrays	 of	

storage)	
Ð!Add	 more	 ECC	 bits	 and	 interleave	

¥! Hard	 to	 protect:	 random	 logic	 (decoders,	 ALUs…)	
¥! However:	 	

Ð!Most	 (>99%)	 bit	 flips	 have	 no	 effect	 (our	 HW	 is	 inefficient?)	 	
Ð!Effect	 is	 oren	 a	 hard	 SW	 failure	

16	

Hardware Error Detection: Assumptions

17	

3.4.1 Compute Node Soft Errors and Failures

Soft errors and failures in the compute node (processor and memory only; network, power, and cooling
discussed later in this section) are a result of events that are entirely external to the system and cannot be
replicated. Furthermore, soft faults are transient in nature and leave no lasting impact on hardware. By far
the most signiÞcant source of soft faults are energetic particles that interact with the silicon substrate and
either ßip the state of a storage element or disrupt the operation of a combinational logic circuit. The two
common sources of particle strike faults are alpha particles that originate within the package and high-energy
neutrons. When a high-energy neutron interacts with the silicon die, it creates a stream of secondary charged
particles. These charged particles then further interact with the semi-conductor material, freeing electron-
hole pairs. If the charged particle creates the electron-hole pairs within the active region of a transistor, a
current pulse is formed. This current pulse can directly change the state of a storage device or can manifest
as a wrong value at the end of a combinational logic chain. Alpha particles are charged and may directly
create electron-hole pairs.

To model the impact a particle strike has on a compute node, we model the effect on each node compo-
nent separately, namely: SRAM, latches, combinational logic, DRAM, and NV-RAM. We then determine a
rough estimates for the number of units of each component within the node. We use this estimate to provide
a very rough order-of-magnitude type fault rates for the compute node. We also brießy mention how such
faults are handled in processors today and discuss how advances in process technology are expected to affect
these soft faults. We make projections for the impact of particle-strike soft errors on a future11nm node,
as well as present an estimate of the overhead/error-rate tradeoffs at the hardware level. The estimates are
based on the models below and on some assumptions about the components of a node, as shown in Table 2.

A few important caveats about the models and projections:

¥ The numbers summarized in the table below do not include hard errors, including intermittent hard
errors. We expect intermittent hard errors and failures in hardware to be a signiÞcant contributor to
software-visible errors and failures.

¥ We do not have access to good models for the susceptibility of near-threshold circuits and do not
consider such designs.

¥ We give only a rough, order-of-magnitude at best, type estimate; many important factors remain
unknown with respect to the11nm technology node.

Table 2: Summary of assumptions on the components of a45nm node and estimates of scaling to11nm.
45nm 11nm

Cores 8 128

Scattered latches per core 200, 000 200, 000

Scattered latchs in uncore relative to cores !
ncores " 1.25 = 0.44

!
ncores " 1.25 = 0.11

FIT per latch 10! 1 10! 1

Arrays per core (MB) 1 1

FIT per SRAM cell 10! 4 10! 4

Logic FIT / latch FIT 0.1 # 0.5 0.1 # 0.5

DRAM FIT (per node) 50 50

12

Hardware Error Detection: Analysis

18	

Array interleaving and SECDED
(Baseline)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 20000 1 1000

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0 4

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1000 - 5000 100000 10 - 100 5000 - 20000 10 - 50 500 - 5000

Array interleaving and ¿SECDED
(11nm overhead: ⇠ 1% area and < 5% power)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1500 - 6500 100000 10 - 50 500 - 5000 10 - 50 100 - 500

Array interleaving and ¿SECDED + latch parity
(45nm overhead ⇠ 10%; 11nm overhead: ⇠ 20% area and ⇠ 25% power)

DCE [FIT] DUE [FIT] UE [FIT]

45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 20 400 0.01 0.5

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 0 0 0.1 0.0 0.100 0.001

Total 1500 - 6500 100000 25 - 100 2000 - 10000 1 5 - 20

Table 3: Summary of per-processor particle-strike soft error characteristics within a compute node (sea level,
equator). Note that other sources of transient faults cannot be ignored.

SRAM. Large SRAM arrays dominate the raw particle-strike fault rate of a processor silicon die. When a
particle strike releases charge within an active region of a transistor in an SRAM cell, the charge collected
may exceed the charge required to change the value stored in the cell, causing a single event upset(SEU). An
SEU may impact a single SRAM cell or may change the values of multiple adjacent cells. Such multi-cell
upsets(MCUs) are also called burst errors. A reasonable ball-park number for SRAM particle-strike upset
rate is 1 upset every 107 hours for 1Mb of capacity, which is a rate of 10�4 FIT/bit. Our best estimates
indicate that the SEU rate for SRAM will remain roughly constant as technology scales. While many
complex phenomena impact susceptibility, the current roadmap of changes to devices, operating voltage,
and scale, do not point to extreme changes in susceptibility. What is expected to change is the distribution
of MCUs, with a single upset more likely to affect longer burst of cells at smaller scales.

Because the raw FIT/chip from SRAM is high (estimated at roughly 0.5 upsets per year per chip, or
multiple upsets an hour in a large-scale HPC system), large arrays are protected with error detection and
error correction capabilities. An approach in use today is a combination of physical word interleaving
coupled with an error detection code (EDC) or with error checking and correcting (ECC) mechanisms.
Given the distribution of MCUs today, 4-way interleaving with SECDED capabilities per array line are
sufficient. Stronger capabilities will likely be needed in the future, but their energy and area overhead is
expected to be low (see Table ??). Note that our estimates assume that 4-bit or longer bursts increase from
1%of all SEUs to 10%or higher between 45nm and 11nm technology and that the rate of bursts of 8 bits or
longer increases from 0.01%of all SEUs to 1% of all SEUs.

Note that alternative storage technology with much lower particle-strike error rates is possible. Some
current processors use embedded DRAM for large arrays and there is a possibility that future processors
will use on-chip arrays of non-volatile storage. Embedded DRAM has a 100 times or more lower error rate
than SRAM. Non-volatile storage cells are immune to particle strikes, but do display some soft error fault

13

Summary of (Rough) Analysis

¥! If	 no	 new	 technology	 is	 deployed	 can	 have	 up	 to	 one	 undetected	
error	 per	 hour	

¥! With	 addi0onal	 circuitry	 could	 get	 down	 to	 one	 undetected	
error	 per	 100-‐1,000	 hours	 (week	 –	 months)	
Ð!Similar	 to	 what	 we	 have	 now!	

¥! With	 no	 new	 inven0on,	 cost	 is	 about	 20%	 addi0onal	 circuits	 and	
25%	 addi0onal	 power	
Ð!New	 inven0on	 may	 reduce	 overhead	

¥! Not	 clear	 required	 components	 will	 be	 available	 at	 low	 cost	
Ð!Market	 for	 highly	 reliable	 servers	 is	 not	 growing	
Ð!Fastest	 growing	 markets	 (mobile,	 consumer	 products,	
clouds)	 requires	 low	 power	 &	 low	 cost	 but	 do	 not	 require	
high	 availability	

19	

SW Alternatives to HW Error Detection

¥! Replicate	 execu0on	 (for	 cri0cal,	 rarely	 executed	 code	 –	 e.g.,	 system	
code)	
Ð! Can	 cost	 <<	 x2,	 with	 architecture/compiler	 support	 (assuming	
memory	 is	 trusted)	

¥! Add	 (via	 compila0on)	 program	 level	 property	 checks	
Ð! SWAT	 project	 (S.	 Adve):	 85%	 coverage	 of	 SDCs	 with	 10%	 overhead	

¥! Add	 error	 detec0on	 to	 applica0on	 code	 (e.g.,	 redundancy	 in	 dense	
linear	 algebra)	

¥! Develop	 fault-‐tolerant	 algorithms	
¥! Hypothesis:	 bit	 flips	 	

Ð! Either	 destroy	 the	 compute	 model	 abstrac0on	 (wrong	 pointers,	
wrong	 jump	 addresses)	 –	 and	 can	 very	 oren	 be	 detected	

Ð!Or	 can	 be	 treated	 as	 noise	 in	 the	 computa0on	 –	 and	 handled	
algorithmically	

20	

Core Assumptions

¥! Checkpoint	 0me	 <<	 MTBF	 	 	 	 (~MTBF/100)	

¥! Recovery	 0me	 <	 MTBF	 (~MTBF/10)	 	 [<<	 1	 hour]	

¥! Errors	 are	 detected	 quickly	 and	 are	 not	 Byzan0ne	

21	

Recovery Time

¥! Localized	 failure	 (e.g.,	 node	 failure)	
Ð!Replace	 node	 and	 restart	 applica0on	 from	 checkpoint	 –	
seconds	 –	 minutes	

¥! Global	 system	 crash	
Ð!Switch,	 parallel	 file	 system,	 resource	 manager,	 monitoring	 &	
control	 SW…	

Ð!Oren	 combina0on	 of	 HW	 failure	 and	 SW	 “performance	 bug”	
Ð!May	 take	 hours	 to	 recover	

¥! Need	 global	 OS	 services	 that	 are	 more	 resilient	 or	 recover	 much	
faster	 (OS/R	 proposal)	
Ð!APIs	 for	 resilience	 (reliable	 execu0on,	 reliable	 storage)	
Ð!Hierarchical	 error	 handling	 (fault	 containment)	
Ð!Reliable	 pub-‐sub	 service	 for	 reliability-‐related	 events	

22	

Core Assumptions

¥! Checkpoint	 0me	 <<	 MTBF	 	 	 	 (~MTBF/100)	 	 [<	 1	 min]	

¥! Recovery	 0me	 <	 MTBF	 (~MTBF/10)	

¥! Errors	 are	 detected	 quickly	 and	 are	 not	 Byzan0ne	

23	

Hybrid Checkpoint

¥! Fast,	 frequent	 checkpoints	 to	 take	 care	 of	 frequent	 failures;	
slower,	 less	 frequent	 checkpoint	 to	 take	 care	 of	 less	 frequent	
failures	

¥! Checkpoint	 in	 memory:	 	 handles	 transient	 errors	
Ð!Seconds;	 	 need	 more	 memory	 (~50%)	 but	 no	 significant	
addi0onal	 power	

¥! Checkpoint	 in	 NVRAM	 memory:	 can	 handle	 node	 failure,	 if	 “twin	
tailed”	

¥! Checkpoint	 in	 memory	 +	 RAID5	 –	 handle	 node	 failures	
Ð!~3	 minutes;	 ~50%	 more	 memory	

¥! Checkpoint	 in	 remote	 NVRAM	 (“burst	 buffers”)	
¥! Checkpoint	 on	 disk	
¥! Doable	 –	 but	 may	 be	 expensive	 and	 may	 be	 hard	 if	 node	

memory	 is	 much	 larger	 (LBNL,	 ANL)	

24	

Avoid Global Checkpoints

¥! Cluster	 checkpoint	 +	 logging	
Ð!Can	 avoid	 domino	 effect	 of	 uncoordinated	 checkpoints	 for	
send-‐determinis0c	 apps	

¥! Save	 energy	 and	 recovery	 0me	
¥! Containment	 domains	 	
¥! Algorithmic	 error	 correc0on	

Ð!Use	 redundancy	 in	 computa0on	 state	
¥! …	

¥! Are	 these	 techniques	 general?	 	

25	

Predict and Avoid Failures

26	

Fig. 7. Percentage of sequences propagating on different racks, midplanes
and nodes

Fig. 8. Prediction time window

propagate on multiple locations. For example the sequence:
can not get assembly information for node card
linkCard power module * is not accessible
no power module * found found on link card
gives information about a node card problem that is not fully
functional. Events marked as ”severe” and ”failure” occur after
around one hour and report that the link card module is not
accessible from the same midplane and that the link card is
not found. The sequence is generated by the same node for
all its occurrences in the log.

For 75% of correlations that do not propagate, the prediction
system does not need to worry about finding the right location
that will be affected by the failure. However, for the other 25%
that propagate, a wrong prediction will lead to a decrease in
both precision and recall. We analyzed this a little further and
observed that for most propagation sequences the initiating
node (the one where the first symptom occurs) is included in
the set of nodes affected by the failure. This leads us to believe
that the recall of the prediction system will be more affected
by the location predictor than its precision.

VI. DISSECTING PREDICTION

Figure 8 shows an overview of the prediction process. The
observation window is used for the outlier detection. The
analysis time represent the overhead of our method in making
a prediction: the execution time for detecting the outlier,
triggering a correlation sequence and finding the correspond-
ing locations. The prediction window is the time delay until
the predicted event will occur in the system. The prediction
window starts right after the observation point but is visible
only at the end of the analysis time.

In the next section we analyze the prediction based on
the visible prediction window and then propose an analytical
model for the impact of our results on checkpointing strategies.

Prediction method Precision Recall Seq used Pred failures
ELSA hybrid 91.2% 45.8% 62 (96.8%) 603
ELSA signal 88.1% 40.5% 117 (92.8%) 534
Data mining 91.9% 15.7% 39 (95.1%) 207

TABLE II
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

The metrics used for evaluating prediction performance are
prediction and recall:

• Precision is the fraction of failure predictions that turn
out to be correct.

• Recall is the fraction of failures that are predicted.

A. Analysis

In the on-line phase the analysis is composed of the outlier
detection and the module that triggers the predictions after
inspecting the correlation chains. We computed the execution
time for different regimes: during the normal execution of the
system and during the periods that put the most stress on the
analysis, specifically periods with bursts of messages. If the
incoming event type is already in an active correlation list, we
do not investigate it further since it will not give us additional
information.

The systems we analyzed generate in average 5 messages
per second and during bursts of messages the logs present
around 100 messages per second. The analysis window is
negligible in the first case and around 2.5 second in the second.
The worst case seen for these systems was 8.43 seconds during
an NFS failure on Mercury. By taking this analysis window
into consideration we examined how many correlation chains
are actually used for predicting failures and which failures are
we able to detect before they occur.

Our previous work showed 43% recall and 93% precision
for the LANL system by using a purely signal analysis
approach. However, at that point, we were not interested about
predicting the location where the fault might occur. In this
paper, we focus on both location and the prediction window.
We compute the results only for the BlueGene/L systems and
guided our metrics based on the severity field offered by the
system.

We analyzed the number of sequences found with our initial
signal analysis approach, the data mining algorithm described
in [29] and the present hybrid method. Signal analysis gives
a larger number of sequences, in general having a small
length, making the analysis window higher. Also, the on-
line outlier detection puts extra stress on the analysis making
the analysis window exceed 30 seconds when the system
experiences bursts. Due to our data mining extraction of multi-
event correlation we were able to keep only the most frequent
subset making the on-line analysis work on a much lighter
correlation set. On the other extreme, the data mining approach
looses correlations between signals of different types, so even
if the correlation set is much smaller than our hybrid method,
the false negative count is higher.

example if 25% of errors are predicted, the new mttf is4mttf
3 .

The rest of the failures are predicted events and have a mean
time between them ofmttf

N seconds.
By applying the new mttf for the un-predicted failures to

equation (2), the new optimal checkpoint interval becomes

Toptimum =

!

2C
mttf
1 ! N

(3)

The Þrst two terms from equation (1) need to change to
consider only the un-predicted failures since for all the others
preventive actions will be taken. By adding the Þrst two terms
and incorporating the value for the checkpoint interval from
equation (3), the minimum waste becomes:

W recall
min =

"
2C(1 ! N)

mttf
+

(R + D)
mttf

(4)

The last term from equation (1) will not change since for all
failures, both predicted and un-predicted, the application needs
to be restarted. Additional to the waste from (4), each time
an error is predicted, the application will take a checkpoint
and it will waste the time execution between this checkpoint
is taken to the occurrence of the failure. This value depends
on the system the application is running on and can range
between a few seconds to even one hour. However, for the
systems we analyzed, in general, the time delay is very low
and for our model we consider that is negligible compared to
the checkpointing time. We add the waste of C seconds for
each predicted failure, which happens everymttf

N seconds.
After adding this waste equation (4) becomes:

W recall
min =

"
2C(1 ! N)

mttf
+

(R + D)
mttf

+
CN
mttf

(5)

In the ideal case, when N=1, the minimum waste is equal to
the time to checkpoint right before every failure and the time
to restart after every failure. The formula assumes a perfect
precision. In case the precision is P, the waste value must
also take into consideration the cases when the prediction
is wrong. The predicted faults happen everymttf

N seconds
and they represent P of total predictions. This means that
the rest of (1-P) false positives predictions will happen every

P
1! P

mttf
N seconds. Each time a false positive is predicted, a

checkpointing is taken that must be added to the total waste
from equation (5):

W recall
min =

"
2C(1 ! N)

mttf
+

(R + D)
mttf

+
CN
mttf

+
CN (1 ! P)

Pmttf
(6)

As an example, we consider the values used by [34] to
characterize current systems: R = 5, D = 1 in minutes and
study two values for the time to checkpoint: C=1 minute and
from [25] C=10 seconds. We computed the gain from using
the prediction offered by our hybrid method with different
precision and recall values and for different MTTFs. Table III

C Precision Recall MTTF for the whole system Waste gain
1min 92 20 one day 9.13%
1min 92 36 one day 17.33%
10s 92 36 one day 12.09%
10s 92 45 one day 15.63%

1min 92 50 5h 21.74%
10s 92 65 5h 24.78%

TABLE III
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

presents the results. The Þrst 4 cases present numbers from real
systems and checkpointing strategies. Interestingly, for future
systems with a MFFT of 5h if the prediction can provide a
recall over 50% then the waist time decreases by more than
20%. For the future, we plan to combine a checkpointing
strategy with our prediction and study its effectiveness in real
HPC systems.

VII. C ONCLUSION

This paper investigates a novel way of analyzing log Þles
from large-scale systems, by combining two different analysis
techniques: data mining and signal processing and using the
advantages given by both. We use signal analysis concepts
for shaping the normal behaviour of each event type and of
the whole system and characterizing the way faults affect
them. This way the models we use are more realistic in that
they take into account the different behaviour of the events
during failure free execution and when failures occur. At the
same time we use data mining algorithms for analyzing the
correlations between these behaviors since these algorithms
prove themselves more suited in characterizing the interactions
between different high dimensionality sets than the cross
correlation function offered by signal analysis.

In our experiments we show that a more realistic model,
like the one obtained with the hybrid method, inßuences the
prediction results and in the end the efÞcacy of fault tolerance
algorithms is improved. We investigated both the lag time
between the prediction moment and the time of occurrence
for the actual failure, taking into consideration the analysis
time, and concluded that the proposed model could allow
proactive actions to be taken. Moreover, since the location
of an error in an important part of a prediction system, we
included in our prediction location analysis and studied its
impact on the results. We will focus in the future on a more
detailed analysis of different error types for which our system
has a low recall. Also, we plan to study to a wider extend, the
practical way the prediction system inßuences current fault
tolerance mechanisms.

ACKNOWLEDGMENT

This work was supported in part by the DoE 9J-30281-
0008A grant, and by the INRIA-Illinois Joint Laboratory for
Petascale Computing.

Migrating processes when node failure is predicted can
significantly improve utilization

Failure Prediction from Event Logs

27	

types of signals: periodic, noise and silent. Figure 1 presents
the three types and the possible cause for each type.

We observed that a fault trigger in the system does not have
a consistent representation in the logs. For example, a memory
failure will cause the faulty module to generate a large number
of messages. Conversely, in case of a node crash the error
will be characterized by a lack of notiÞcations. Data mining
algorithms in general assume that faults manifest themselfs in
the same way and in consequence fail to handle more than
one type behaviors.

For example, even though silent signals represent the ma-
jority of event types, data mining algorithms fail to extract
the correlation between them and other types of signals. This
affects fault prediction in both the total number of faults seen
by the method and in the time delay offered between the
prediction and the actual occurrence of the fault.

Signal analysis methods concepts can handle all three signal
types, and thus provide a larger set of correlations that can be
used for prediction. However, data mining algorithms are more
suited in characterizing correlations between different high
dimensionality sets than the cross correlation function offered
by signal analysis. Data mining is a powerful technology that
converts raw data into an understandable and actionable form,
which can then be used to predict future trends or provide
meaning to historical events.

Additionally, outlier detection has a rich research history
in incorporating both statistical and data mining methods for
different types of datasets. Moreover, they are able to implic-
itly adapt to changes in the dataset and to apply threshold
based distance measures separating outliers from the bulk of
good observations. In this paper, we combine the advantages
of both methods in order to offer a hybrid approach capable of
characterizing different behaviors given by events generated by
a HPC system and providing an adaptive forecasting method
by using latest data mining techniques.

In the following sections we present the methodology used
for preprocessing the log Þles and extracting the signals and
then we introduce the novel hybrid method that combines
signal analysis concepts with data mining techniques for
outlier detection and correlation extraction. An overview of
the methodology is presented in Þgure 2.

A. Preprocessing

Log Þles generated by large HPC system contain million
of message lines, making their manual analysis impossible.
Moreover, the format in which messages are generated is not
structured and differs between different system and sometimes
even between different components of the same machine. In
order to bring structure to our analysis, we extract the descrip-
tion of all generated messages. These descriptions represent
the characterization of different events used by the system.
Also, as software changes with versions, bug Þxes or driver
updates, these descriptions are modiÞed to reßect the systemÕs
output at all time.

For this, we performed an initial pass over the logs Þles to
identify frequently occurring messages with similar syntactic

Fig. 2. Methodology overview of the hybrid approach

patterns. SpeciÞcally, we use the Hierarchical Event Log
Organizer [15] on the raw logs, resulting in a list of message
templates. These templates represent regular expressions that
describe a set of syntactically related messages and deÞne
different events in a system. In the on-line phase, we use
HELO on-line to keep the set of templates updated and
relevant to the output of the system.

For the rest of the paper, we analyze the generated events
separately by extracting a signal for each of them and char-
acterizing their behavior and the correlations between them.
Figure 1 presents one template or event type for each type
of signals. First, we extract the signal for each event type by
sampling the number of event occurrences for every time unit
and afterwards we use wavelets and Þltering to characterize
the normal behavior for each of them. In our experiments, we
use a sampling rate of 10 seconds for all signals. More details
about this step can be found in [4].

In the on-line phase, the signal creation module simply
concatenates the existing signals with the information received
from the input stream of events. For optimization purposes,
we only keep the last two months in the on-line module since
execution time is an important factor in this phase. The outline
monitor and the prediction system are applied on this trimmed
and updated set of signals.

B. Analysis Modules

1) Outlier detection:All analysis modules are novel hybrid
modules that combine data mining techniques with the previ-
ously extracted set of signals and their characterization. Since
the ofßine phase is not ran in real-time and the execution time
is not constrained, we did not optimize this step. For outlier
detection in the on-line phase, we use as input the adapted
set of signals and apply a simple data cleaning method for
identifying the erroneous data points.

We implement this step as a Þltering signal analysis module
so that is can be easily inserted between signal analysis

Gainaru, Cappello, Snir, Kramer (SC12)

Use a combination of signal analysis (to identify outliers) and
datamining (to find correlations)

May	 13	 MCS	 	 -‐-‐	 Marc	 Snir	
28	

Bring SW
faults under
control

Better
understand
current/future
sources of error

SDC?

LIFE is HARD

YES
NO

Current checkpoint/
restart works OK (?)
¥! Need hybrid

checkpointing)

Fancier solutions
could save compute
time, power & HW
cost

Life with SDCs

¥! Build	 system	 SW	 immune	 to	 SDCs	 or	 build	 build	 good	 detectors	
and	 fast	 repair	

¥! Build	 middleware	 (compilers,	 run-‐0me)	 that	 can	 detect	 and	
correct	 “abstrac0on	 breaking”	 SDCs	 in	 user	 code	

¥! Built	 applica0on	 SW	 that	 detects	 SDCs	 in	 data	 or	 can	 tolerate	
them	

¥! Build	 infrastructure	 to	 compose	 everything	

29	

30	

The End

