AAAAAAAAAAAAAAAAAA

Resilience at Exascale

Marc Snir

Director, Mathematics and
Computer Science Division

Argonne National Laboratory

Professor, Dept. of Computer
Science, UIUC

.{f*i'\«;" U.S. DEPARTMENT OF
.%s ENERGY

Problem

¥ Exascale resilience is “a black swan — the most difficult, under-
addressed issue facing HPC.” (ASCAC 2011)

¥ Fear: a Exaflop/s system will fail so frequently that no useful
work will be possible

¥ DOE & DoD commissioned several reports
Pl Inter-Agency Workshop on HPC Resilience at Extreme Scale

http://institute.lanl.gov/resilience/docs/Inter-
AgencyResilienceReport.pdf (Feb 2012)

PXU.S. Department of Energy Fault Management Workshop

http://shadow.dyndns.info/publications/
geistl2department.pdf (June 2012)

Bi...

Addressing Failures in Exascale Computing

¥ Week-long workshop summer 2012
|

"#1$%&'R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P.
Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P.
Coteus, N. A. Debardeleben, P. Diniz, C. Engelmann, M. Erez, S.
Fazzari, A. Geist, R. Gupta, F. Johnson. S. Krishnamoorthy, S.
Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, E.
V. Hensbergen!

¥ Argonne Report ANL/MCS-TM-332, April 2013.

http://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-
TM-332.pdf

SUPERCOMPUTING TODAY

Argonne Mira (IBM -- Blue Gene/Q)

¥ 48K nodes
£)11.6 GHz 16-way core
£116 GB RAM

¥ 768K cores

0.768 PB DRAM

¥ 35 PB Disk storage
B1 240 GB/s bandwidth

. 4

¥ 10 Petaflop/s (10 flop/s) peak
performance

¥ LLNL Sequoia is Mirax2

Oak Ridge Titan

¥ 18,688 nodes

£12.2 GHz AMD 16-core
Opteron 6274 processor

£)32GB DRAM

¥ 18,688 GPUs
PEYNVIDIA Kepler K20
P)6 GB DRAM

¥ 299K CPU cores

¥ 0.71 PB DRAM

¥ 20 Petaflop/s peak performance

How Reliable Are They?

¥ MTBF of 1-7 days (failure = lost job)
PlGlobal system crashes ~1/10 of errors

PIThis does not account for failures due to bugs in
user code!

¥ 60%-80% of failures are due to software

PlMostly in the parallel file system

PlMostly “performance bugs” (thrashing, time-outs)
¥ Many complex, cascading errors

PIRoot cause analysis is imperfect and very time
consuming

¥ No Byzantine errors
¥ No silent errors (?7?)

How do we Handle Failures?

¥ System: Reboot, repair
BPYMTTR: 3-24 hours
¥ Application: Checkpoint, restart
Bl User checkpoint/restart
Pl ~15-20 minutes checkpoint or restart

~1-+/2x Chkpt | MTBF

¥ Optimal checkpoint interval = \/2 x Chkpt x MTBF

¥ Utilization ! 1" \/2#Chkpt/ MTBF
¥ Chkpt =15 min, MTBF = 24 hrs => Util = 85%

Utilization, Assuming Poisson Failure Model

Utihization

~ - /

0 4 e s 100 Chckpt/MTBF

Core Assumptions

¥ Checkpoint time << MTBF (~*MTBF/100)
¥ Recovery time < MTBF (*“MTBF/10)

¥ Errors are detected quickly and are not Byzantine

SUPERCOMPUTING IN 10 YEARS

Exascale Design Point

$()*+,'6+?B!
C5I1+'l

System memory

Node performance

Node memory BW
Node concurrency
Total Node Interconnect BW

System size (nodes)

Total concurrency

MTTI

-./-1

0123!
45,67%+'1

-.ICD562)!

J#KIL!

1.6 PB
(16*96*1024)

205 GF/s

(16*1.6GHz*8)

42.6 GB/s
64 Threads
20 GB/s

98,304
(96*1024)

5.97 M

4 days

;
:

i
;

-.-.8-.-9!

/ED562)!

M-.1"LI

& +'+%<+!

=5>2(1@!-./A!

FG/..H!

32 - 64 PB!

0(10)

1.2 or 15TF/s

2 - 4TB/s!

0(10) - 0(100)

0(1000)

O(1k) or 10k

!
b

0(100) — 0O(1000

200-400GB/s

0(100,000) or O(1M)

0(10)

0(100) — O(1000)

O(billion)

0(1,000)

O(<1 day)

- 0(10)

Both price and power envelopes may be too aggressive!

Going Forward: Risks

¥ More complex application codes -> more user errors
¥ More complex system codes -> more “logic” system errors

Bl power management, error handling, asynchronous
algorithms, dynamic resource provisioning, complex
workflows...

¥ Larger system -> more “performance” system errors

¥ More hardware -> more hardware errors

¥ More failure-prone hardware -> More hardware errors
Bl Smaller feature size -> more variance, faster aging

Pl Sub-threshold logic -> more bit upsets, more multiple-bit
upsets

A

RESILIENCE AT EXASCALE

Core Assumptions

¥
¥

¥ Errors are detected quickly and are not Byzantine

Silent Data Corruption

¥ Reasonably well studied: Impact of cosmic radiation

¥ Reasonably easy to protect: DRAM, SRAM, regular arrays of
storage)

P) Add more ECC bits and interleave

¥ Hard to protect: random logic (decoders, ALUs...)

¥4 However:
Bl Most (>99%) bit flips have no effect (our HW is inefficient?)
Pl Effect is often a hard SW failure

Hardware Error Detection: Assumptions

45nm 11nm
Cores 8 128
Scattered latches per core 200,000 200, 000

Scattered latchs in uncore relative to cores

" Neores " 1.25 = 0.44

" Megres " 1.25=0.11

FIT per latch 10 1 10 1

Arrays per core (MB) 1 1
FIT per SRAM cell 10 4 10 4
Logic FIT /latch FIT 0.1# 0.5 0.1# 0.5
DRAM FIT (per node) 50 50

Hardware Error Detection: Analysis

Array interleaving and SECDED

(Baseline)

DCE [FIT] DUE [FIT] UE [FIT]
45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 20000 1 1000
Scattered latches 200 4000 N/A N/A 20 400
Combinational logic 20 400 N/A N/A 0 4
DRAM 50 50 0.5 0.5 0.005 0.005
Total 1000 - 5000 100000 10 - 100 5000 - 20000 10-50 500 - 5000

Array interleaving and ;SECDED
(11nm overhead: ~ 1% area and < 5% power)

DCE [FIT] DUE [FIT] UE [FIT]
45nm 11nm 45nm I11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5
Scattered latches 200 4000 N/A N/A 20 400
Combinational logic 20 400 N/A N/A 0.2 5
DRAM 50 50 0.5 0.5 0.005 0.005
Total 1500 - 6500 100000 10 - 50 500 - 5000 10 - 50 100 - 500

Array interleaving and ;SECDED + latch parity

(45nm overhead ~ 10%; 11nm overhead: ~ 20% area and ~ 25% power)

DCE [FIT] DUE [FIT] UE [FIT]
45nm 11nm 45nm 11nm 45nm 11nm
Arrays 5000 100000 50 1000 1 5
Scattered latches 200 4000 20 400 0.01 0.5
Combinational logic 20 400 N/A N/A 0.2 5
DRAM 0 0 0.1 0.0 0.100 0.001
Total 1500 - 6500 100000 25-100 2000 - 10000 1 5-20

Summary of (Rough) Analysis

¥

¥

If no new technology is deployed can have up to one undetected
error per hour

With additional circuitry could get down to one undetected
error per 100-1,000 hours (week — months)

P Similar to what we have now!

With no new invention, cost is about 20% additional circuits and
25% additional power

B New invention may reduce overhead
Not clear required components will be available at low cost
P Market for highly reliable servers is not growing

P Fastest growing markets (mobile, consumer products,
clouds) requires low power & low cost but do not require
high availability

A

SW Alternatives to HW Error Detection

¥ Replicate execution (for critical, rarely executed code — e.g., system
code)

Bl Can cost << x2, with architecture/compiler support (assuming
memory is trusted)

¥ Add (via compilation) program level property checks

P SWAT project (S. Adve): 85% coverage of SDCs with 10% overhead

¥ Add error detection to application code (e.g., redundancy in dense
linear algebra)

#

Develop fault-tolerant algorithms

H#

Hypothesis: bit flips
B Either destroy the compute model abstraction (wrong pointers,
wrong jump addresses) —and can very often be detected

) Or can be treated as noise in the computation —and handled
algorithmically

Core Assumptions

¥ Checkpoint time << MTBF (~MTBF/100)
¥ Recovery time < MTBF (*MTBF/10) [<< 1 hour]

¥ Errors are detected quickly and are not Byzantine

Recovery Time

¥ Localized failure (e.g., node failure)

Pl Replace node and restart application from checkpoint —
seconds — minutes

¥ Global system crash

Bl Switch, parallel file system, resource manager, monitoring &
control SW...

P Often combination of HW failure and SW “performance bug”
P May take hours to recover

¥ Need global OS services that are more resilient or recover much
faster (OS/R proposal)

P) APIs for resilience (reliable execution, reliable storage)
Pl Hierarchical error handling (fault containment)
Pl Reliable pub-sub service for reliability-related events

Core Assumptions

¥ Checkpoint time << MTBF (*MTBF/100) [< 1 min]
¥ Recovery time < MTBF (“MTBF/10)

¥ Errors are detected quickly and are not Byzantine

o G G 4

Hybrid Checkpoint

Fast, frequent checkpoints to take care of frequent failures;
slower, less frequent checkpoint to take care of less frequent
failures

Checkpoint in memory: handles transient errors

P)Seconds; need more memory (¥*50%) but no significant
additional power

Checkpoint in NVRAM memory: can handle node failure, if “twin
tailed”

Checkpoint in memory + RAID5 — handle node failures
Bl ~3 minutes; ~50% more memory

Checkpoint in remote NVRAM (“burst buffers”)
Checkpoint on disk

Doable — but may be expensive and may be hard if node
memory is much larger (LBNL, ANL)

Avoid Global Checkpoints

¥ Cluster checkpoint + logging

B) Can avoid domino effect of uncoordinated checkpoints for
send-deterministic apps

¥ Save energy and recovery time
¥ Containment domains
¥ Algorithmic error correction

Pl Use redundancy in computation state
¥ ..

¥ Are these techniques general?

Predict and Avoid Failures

Prediction method | Precision | Recall Seq used Pred failures
ELSA hybrid 91.2% 45.8% | 62 (96.8%) 603
ELSA signal . 40.5%—H792.8%) 534
Data mining 91.9% 15.7% 39 (95.1%) 207

o

C Precision | Recall | MTTF for the whole system| Waste gain
| 1min 92 20 one day 9.13%
~*“Min 92 36 one day 17.33%
10s 92 36 one day 12.09%
y 10s 92 45 one day 15.63%
1min 92 50 5h 21.74%
10s 92 65 5h 24.78%

Migrating processes when node failure is predicted can

significantly improve utilization

Failure Prediction from Event Logs

Use a combination of signal analysis (to identify outliers) and
datamining (to find correlations)

21

o d

A S D oS o

—r
-

n
C
I
'€
tl

Preprocessing

HELO offline

v

Signal
extraction

v

Signal
characterization

Input
stream of
events

Preprocessing

HELO online

OFFLINE

List of
signals

Analysis module

Location
correlation

Location

L

Qutlier detection

v

Correlation

correlation
list

List of

correlations

v

Signal
creation

% Analysis module
=
»| Outlier monitor
v
Prediction
ONLINE

Gainaﬂﬂ‘,ad:appello, Snir, Kramer (SC12)

update

Better
understand

current/future
sources ?f error

Bring SW
faults undel
control

l

YENO

LIFE is HARD

Current checkpoint/
restart works OK (?)

¥ Need hybrid
checkpointing)

Fancier solutions
could save compute
time, power & HW
cost

May 13 MCS -- Marc Snir

28

Life with SDCs

¥ Build system SW immune to SDCs or build build good detectors
and fast repair

¥ Build middleware (compilers, run-time) that can detect and
correct “abstraction breaking” SDCs in user code

¥ Built application SW that detects SDCs in data or can tolerate
them

¥ Build infrastructure to compose everything

