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Abstract

One very important application in the data mining do-
main is frequent pattern mining. Various authors have
worked on improving the efficiency of this computation,
mostly focusing on algorithm-level improvement. More
recent work has explored architecture specific optimiza-
tions of this computation. Our goal in this paper is to
provide a systematic approach to architecture-level soft-
ware optimizations by identifying applicable tuning pat-
terns. We show the generality and effectiveness of these pat-
terns by tuning several frequent pattern mining algorithms
and showing significant performance improvements.

1. Introduction and motivation

Frequent pattern mining, also known as frequent itemset
mining, aims to discover groups of items that co-occur fre-
quently in a database. This is a fundamental data mining
problem with many applications. Since the introduction of
this problem by Agrawal et al. [2], a large number of algo-
rithms [2, 3, 14, 12, 7, 30, 34, 15, 21, 25, 33] have been
proposed. No one algorithm dominates: previous research
has shown that the performance of these algorithms is very
dependent on input characteristics [13, 19]; we have also
found that the performance is very dependent on platform
specific optimizations.

We study in this paper the issue of adapting an algorithm
to platform characteristics. We use the termArchitecture-
Level Software Optimizations (ALSO)to denote such archi-
tecture specific optimizations; by ALSO we mean optimiza-
tions that are beyond the capabilities of current compilers,
because they require high level transformations that are of-
ten application specific, and often require information that
is not available to compilers.

Pattern, in software engineering terminology, is a gen-

eral repeatable solution to a commonly-occurring problem
in software design. A pattern is not a finished design that
can be transformed directly into code; it is a description
or template for how to solve a problem that can be used in
many different situations. In this paper we study ALSO tun-
ing patterns: general tuning techniques that can solve per-
formance issues that recur in many codes; and can be easily
applied by algorithm implementors.

To our knowledge, our paper provides the first system-
atic study of architecture-level software optimizations for
frequent pattern mining. ALSO techniques such as cache-
conscious data access, prefetch and SIMDization have been
applied in scientific computing, multimedia and database,
but have had few applications to pattern mining. Ghot-
ing et al. [11] have proposed optimizations for some tree
based implementations. Adaptive data structures have been
used in [21, 20, 24, 29]. These papers have studied al-
gorithms in isolation and little work has been done to de-
velop optimizations that generalize to multiple implemen-
tations. We study tuning patterns that have broad applica-
bility. This includes changes in in-memory database lay-
out to improve the spatial locality; cache-conscious and
optimization-friendly data structure design; and data ac-
cessing and processing patterns that improve temporal lo-
cality, reduce memory access latency and improve compu-
tation. Some of the tuning patterns, such aslexicographic
ordering and wave-front prefetchare, to our knowledge,
new. Theaggregation, compaction, software prefetchand
SIMDizationpatterns are for the first time used in frequent
pattern mining. We demonstrate the general applicability
and effectiveness of these tuning patterns by selectively ap-
plying them to three efficient and very different pattern min-
ing algorithms, LCM, Eclat and FP-growth, and showing
significant improvements.
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Figure 1. The traversal space of itemsets

2. Frequent pattern mining

2.1. Frequent pattern mining algorithms

Frequent pattern mining was introduced by Agrawal et
al. [2] in the study of association rule mining. LetI =

{i1, i2, . . . , im} be a set ofm items, and let adatabase
T = {t1, t2, . . . , tn} be a set ofn transactions, where each
transactionti is a subset ofI. Any subset ofI is called an
itemset. Thesupportfor an itemset is defined as the num-
ber of transactions that subsume the itemset. The task of
frequent pattern mining is, given a transactional databaseT
and a support thresholds, to output all itemsets with support
greater than or equal tos.

Given a database withm items, there are potentially2m

itemsets, which form alattice of subsetsoverI. Figure 1
shows an example of itemset traversal space for a database
with I = {a, b, c, d, e}. A typical depth-first algorithm,
starts with the initial database, and recursively creates pro-
jected databases that consist of the transactions containing
a particular item.

2.2. Optimization potentials

Figure 2 shows the CPI (Cycle Per Instruction) of the
most time consuming functions in three leading frequent
pattern mining codes. TheLCM implementation got best
implementation award at the FIMI’04 workshop [19]; the
FP-Growth got the award at the FIMI’03 workshop [13];
the Eclat implementation is taken from the repository of
FIMI’04. These three kernels cover most common data
structures and data access patterns. The CPI data is col-
lected on the Pentium D system described in column M1 in
Table 5. Each core of the Pentium D processor is able to
retire 3µops per cycle, with an optimum CPI of0.33.

As we can see from Figure 2, there is plenty of room for
performance improvements. Our general approach is to op-
timize memory accesses for those codes with a high CPI and
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Figure 2. CPI for most time consuming func-
tions

cache miss rate; and to optimize the arithmetic operations
for those with a low CPI and cache miss rate. The LCM
and FP-Growth algorithms are clearly memory bound, as
they have a high CPI, and further studies reveal that they
also have high cache miss rates. As to Eclat, it has a low
CPI and is computation bound. We provide details on op-
timization patterns that improve the performance of these
codes in Section 3.

3. ALSO patterns for frequent pattern mining

We have identified several optimization problems that
occur frequently. We document the solutions to these prob-
lems as patterns in this section. Requiring application spe-
cific knowledge to apply, these patterns are high-level opti-
mization techniques, complementary to compiler optimiza-
tions such as loop unrolling and software pipelining. These
optimizations can be roughly generalized to three categories
of patterns: patterns to optimize the database layout, pat-
terns to optimize the internal data representations and pat-
terns to optimize data accesses.

3.1. Common optimization opportunities

The first optimization modifies the layout of the in-
memory (projected) databases. The ordering of transactions
in these databases is not significant, and transactions can
be permuted. We can improve the locality of accesses to
the database by choosing a suitable permutation. This can
have a significant impact as database transactions are often
repeatedly accessed during computation. In addition, the
locality property is partly inherited by the lower-level, pro-
jected databases.

The second optimization concerns the data structure
used for the database. We focus on representations that
are cache-friendly, i.e., reduce cache misses; and are
optimization-friendly, e.g., inserting prefetch pointers for
software prefetch.

Finally, memory latency hiding and arithmetic accelera-
tion techniques can be used for memory bound and compu-
tation bound applications respectively.



We describe the ALSO patterns in detail in the follow-
ing sections; we use the symbolPi to mark theith tuning
pattern.

3.2. Database Layout

This optimization is used when unordered transactions
are frequently accessed in a particular order. It moves the
transactions that are often successively accessed to consec-
utive memory locations to improve the spatial locality, re-
ducing both cache and TLB misses.

The reordering process may require additional memory
and it is especially expensive when the database is large and
the transactions are long. Among all of the databases cre-
ated during the mining process, the initial database is the
largest and is accessed most frequently. Furthermore, the
layout of the initial database is preserved to some extent in
the projected databases. Therefore, we focus on improving
locality in the initial database.

P1: Lexicographic ordering. Thefrequencyof an item is
the number of transactions that contain that item. We order
the items in each transaction in decreasing frequency order.
We then order the transactions in lexicographic order, based
on the decreasing frequency order of the items, i.e., the al-
phabet are items in decreasing frequency order. The trans-
formation is illustrated in Table 1. Lexicographic ordering
can be used in various algorithms, we give an example of
its use in an array based horizontal database setting, which
is used in LCM.

As described in section 2.1, an operation common to
frequent pattern mining algorithms is to walk through the
(projected) databases and construct lower-level projected
databases. All transactions that contain a particular item
are accessed in this process. The lexicographic ordering
moves transactions containing the same item close to each
other, so that spatial locality is improved; cache and TLB
misses are reduced. This reduction in cache misses will be
most significant when the transactions are short, as in long
transactions, most of the spatial locality is already captured
by storing items in each transaction in consecutive memory
locations.

In the lexicographic layout all transactions on the most
frequent item are contiguous; transactions on the second
most frequent item have at most one discontinuity; and
so on. This ordering will tend to reduce the total number
of discontinuities, and especially reduce discontinuities for
frequent items, thus improving locality.

If a bit vector is used to represent transactions occur-
rences in a vertical database then the lexicographic ordering
enables another optimization,0-escaping (see section 4.2
for details). For the tree-based horizontal database, we lexi-
cographically reorder transactions before tree construction.
This improves the temporal locality for insertion and places

Alphabet: c, f, a, b, d, e

tid transaction

0 {a, c, f}
1 {b, c, f}
2 {a, c, f}
3 {d, e}
4 {a, b, c, d, e, f}

⇒

tid transaction

0 {c, f a}
1 {c, f, a}
2 {c, f, a, b, d, e}
3 {c, f, b}
4 {d, e}

Table 1. Lexicographic ordering

nodes that are adjacent in a path in consecutive memory lo-
cations, thus improving the spatial locality for later traver-
sal. For tree based algorithms, the difference between the
lexicographic ordering and depth-first order storage [11] is
that the lexicographic ordering is performed as a prepro-
cessing before the tree is built and it optimizes both inser-
tion and traversal operations, whereas the depth-first order-
ing is a reorganization of the tree structure, only to optimize
the traversal.

3.3. Data structures

P2: Data structure adaptation. The data structure used
to represent in-memory databases can be adapted to the in-
put characteristics.

We can think of a database withn transactions andm
items as of am×n tableA; Aij = 1 if transactioni contains
item j, Aij = 0, otherwise. There are several choices on
how to represent this table.

Feature 1: The table can be storedhorizontally in
transaction-major order; orvertically, in an item-major or-
der.

Feature 2: Assume a transaction-major order (some sim-
ilar choices exist for item-major order). (1) One can store
each row as a bit vector, so that the table is represented as a
densem × n boolean matrix; (2) alternatively, one can use
asparserepresentation that stores, for each row, the indices
of the non-zero entries; (3) finally, one can use aprefix tree
representation where shared nodes are used to represent a
common prefix of several rows. These three representations
are illustrated in Figure 3, for the database shown in Table 1.

Another example of the data structure adaptation pattern
is to use a compression scheme whereby fewer bytes are
used to represent the common cases.

P3: Aggregation. It is used to improve performance for
the traversal of linked data structures, which are common
in frequent pattern mining. There are two problems with
such traversal. The first is that the traversal is memory
latency bound, as successive memory accesses cannot be
overlapped. The second is poor spatial locality, as nodes
may occupy less than a cache line and successive nodes are
not necessarily stored in consecutive locations.
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Figure 3. Database Representations

Performance is improved by aggregating multiple con-
secutive nodes on a traversal path into onesupernode. Mak-
ing each supernode the size of a cache line seems to be op-
timal.

When this optimization is applied to trees, then nodes
can be replicated, as they are shared by multiple path; this
partially offsets the compression achieved by using a prefix
tree representation. Figure 4 shows the aggregation of a tree
structure. We compress four consecutive tree levels into one
superlevel, aggregating all paths in the superlevel into one
node.

The aggregation is efficient only when the data structure
is seldom updated, as an insertion to the middle of an ag-
gregated linked list is expensive.

P4: Compaction. Compactioncopies data that are scat-
tered in memory into consecutive memory locations, to im-
prove spatial locality. Compaction is worthwhile if the cost
of copying is amortized over a large number of subsequent
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Figure 5. Wave-front prefetch

accesses.

P5: Prefetch Pointers. Some ALSOs are implemented
by creating additional data structures. An example is the
use of prefetch pointers to improve the traversal of linked
data structures.Prefetch pointers[28] are inserted in a pre-
processing stage, pointing from each node to other nodes
that are likely to be accessed soon after the access to that
node. Prefetch pointers allow a better overlap of memory
accesses, at the expense of extra storage and preprocessing
time.

3.4. Data access

Optimizations in this category focus on reducing mem-
ory bottlenecks.

P6: Tiling. Tiling is used when large data structures are
accessed frequently. Tiling for dense matrix operations is
well-known and can be applied to variants of frequent pat-
tern mining that use such matrices. Tiling for trees is pro-
posed in [11].

P6.1: Tiling for sparse representations. Sparse matrices are
commonly used to represent the database. Temporal local-
ity is poor in the common case when a large database is
repeatedly traversed. Researchers have proposed tiling for
sparse matrix vector multiplications [16, 18, 17]. This work
is, however, tied to sparse matrix and dense vector opera-
tions and does not directly apply to frequent pattern min-
ing. Our basic idea for tiling is to slice the sparse matrices
into horizontal tiles according to the row range and then
to process one tile at a time, with an outer loop that walks
through tiles and an inner loop that traverses entries within
a tile. See section 4.1 for an example. The disadvantage of
tiling is the overhead for the added level of loop nesting.

P7: Software prefetching. Prefetching [23] is an effec-
tive way to hide memory latencies. Software prefetch-
ing can be used for linked data structure, where hardware
prefetching does not work well. Software prefetching can
be performed by following the pre-inserted prefetch point-
ers [28]. Mispredicted prefetches, however, may impair the
performance.



Pattern Spatial
locality

Temporal
locality

Memory
latency

Compu-
tation

Lexicographic ordering
√ √ √

Data structure adapta-
tion

√

Aggregation
√ √

Compaction
√ √

Software prefetch
√

Tiling
√

SIMDization
√

Table 2. ALSO patterns

P7.1: Wave-front prefetching. Arrays of short linked lists
(see Figure 5) are commonly used in frequent pattern min-
ing. The common access pattern is to traverse each linked
list. Existing linked list prefetch algorithms have good per-
formance only when the linked lists are long and do not
apply to our case. Instead, we propose to usewave-front
prefetching. The basic idea is that we can prefetch entries
from different linked lists in the same iteration. In Figure5,
the numbers over the arrows are the iteration numbers when
the correspondent entries are prefetched; the indices on the
left indicate the iteration when the linked list is traversed.
Suppose the memory latency is less than the time to tra-
verse two short linked lists; then we can prefetch three links
in each iteration as shown in Figure 5. At the time when
entries need to be prefetched, their addresses have already
been loaded by previous prefetches.

3.5. Instruction parallelism

Optimizations in this category focus on improving in-
struction parallelism, for computation bound kernels.

P8: SIMDization. SIMD instructions are available on
most of the commodity processors; they can accelerate
computation bound applications. Memory prefetch in-
structions are also available in the SIMD instruction set.
The SIMDization optimization, however, requires sufficient
data-level parallelism in the algorithm and needs to handle
memory alignment problems.

Table 2 summarizes the ALSO patterns and shows what
improvements these optimizations can provide.

4. Case studies: LCM, Eclat and FP-Growth

We selected three highly optimized frequent pattern min-
ing kernels to evaluate the applicability and effectiveness of
our ALSO patterns. They cover most efficient algorithm
space and data structure design choices. TheLCM imple-
mentation got best implementation award at the FIMI’04
workshop [19]; theFP-Growth is an efficient implemen-
tation of the FP-Growth algorithm; theEclat implementa-

Kernel Database typeData structure Bound
LCM horizontal array memory
Eclat vertical bit vector (array) computation
FP-Growth horizontal tree memory

Table 3. Characteristics of LCM, Eclat and FP-
Growth

tion is an optimized version of that taken from the repos-
itory of FIMI’04 [6]. The Eclat implementation that we
studied uses a bit vector data structure for the transactional
database. Table 3 shows the characteristics of the three ker-
nels evaluated. We did not cover breadth-first search algo-
rithms, such asApriori [3], because the depth-first search al-
gorithms are generally considered to be more efficient and
our study is focusing on kernels with different data repre-
sentations, rather than a study on different algorithms. We
applied several locality and memory optimization patterns
on LCM and FP-Growth, and mainly used computation op-
timization patterns on Eclat. Table 4 shows the patterns that
we have studied for these three kernels. The “

√
” marks

those patterns that we have applied in the case studies. The
“©” marks the optimizations that have already been pro-
posed in the literature, which we did not incorporate in the
evaluation. “—” are the patterns that we have not studied.

Patterns LCM Eclat FP-Growth
Lexicographic ordering

√ √ √

Data structure adaptation — © √

Aggregation
√

—
√

Compaction
√

—
√

Pointer prefetching — —
√

Tiling
√

— ©
Software prefetch

√
—

√

SIMDization —
√

—

Table 4. Optimization patterns for LCM, Eclat
and FP-Growth

4.1. LCM

Since LCM (Linear time Closed itemset Miner) [32] is
memory bound, we focus on patterns that could improve
memory performance.

Figure 6 shows the main data structure that is traversed
by theCALCFREQ function which takes 54.43% of the total
execution time. The data structure consists of a transaction-
major sparse array that represents the database, augmented
by an item-major sparse arrayOccArray that is used for
speeding up the construction of projected databases. Each
column (calledocc, shown as shaded column) stores point-
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ers to the headers of transactions containing the correspond-
ing item. For each call ofCALCFREQ, the execution tra-
verses one of these columns, follows the pointers to transac-
tion headers and accesses all the items in these transactions.
Pointers dereferenced in this process are shown as dashed
arrows in Figure 6.

We uselexicographic orderingto improve the spacial lo-
cality of the initial database.

Another function that takes 25.5% of the total execution
time isRMDUPTRANS. It removes identical transactions in
the database. In the original implementation, bucket (radix)
sorting is used to find duplicated transactions. A linked list
is used to link all the transactions that fall into the same
bucket. As the linked list is mostly read only, we useaggre-
gationto reduce dereferences and improve spatial locality.

The frequency countersthat are frequently used inCAL-
CFREQ are not in contiguous locations. They are structured
with theOccArray. By compactionthe frequency counters
are moved to contiguous memory locations, thus improving
the locality and reducing the cache and TLB misses.

As CALCFREQ involves the traversal of a list of short
linked lists, we usewave-front prefetchfor pointers inocc
array and pointers in transaction headers.

The functionCACLFREQ is called from a loop that in-
vokesCALCFREQ for columns ofOccArray. For each run
of CALCFREQ, in the worst case, the whole database is
scanned, with little cache reuse.Tiling for sparse represen-
tation could be done for invocation ofCALCFREQ for the
columns of the OccArray in the following way: The array
OccArray is split into tiles (separated by dark lines in Fig-
ure 6). Each tile contains the transactions within a particular
offset range. The internal loop performs all theCALCFREQ

computations for one tile; the external loop iterates over all
tiles. We choose the tile size to fit in the L1 cache.

4.2. Eclat

The Eclat algorithm [6] uses a vertical, dense bit matrix
representation. The columns represent initially the occur-
rence of items in transactions; as the algorithm proceeds,
the columns represent the occurrence of itemsets in trans-
actions. The “and” of the bit vectors for two itemsets com-
putes the bit vector for the union of the two itemsets. 98%
of the total execution time is spent in these vector and’s and
in counting the number of ones in the resulting vectors (fre-
quency counting).

By lexicographic orderingthe initial transactions, the1s
in the bit vectors for the most frequent items are clustered.
In particular, the1s for the most frequent item are consec-
utively stored at the beginning of the vector. The lexico-
graphic ordering enables the0-escaping. The idea of0-
escaping is to skip intersecting and frequency counting on
the bit vector sections where either operand vectors are all
0s. This is achieved by storing, for each vector, the start
and end position of a1-range, which includes all the1s in
the bit vector. The ranges are initialized by computing the
first and last 1 in each item bit-vector and updated by in-
tersecting the corresponding1-ranges when two bit vectors
are and’ed. Then the intersection and frequency counting
are performed only within the computed range, skipping0s
at the beginning and the end of the intersecting vectors. The
reordering improves the performance of0-escaping, as the
1s are moved together and the1-range for the correspon-
dent bit vectors becomes shorter; fewer operations need to
be performed. Note that the1-ranges thus computed are
conservative, but not necessarily optimal.

There is plenty of data-level parallelism in Eclat. Clearly,
the bit vector intersection can beSIMDized. In the original
implementation, table lookups are used to count the number
of 1s in the bit vector. The table lookup is an indirect load,
which cannot be SIMDized. We use computations to count
the frequency of ones, which can be easily SIMDized.

4.3. FP-Growth

FP-Growth [15] uses an augmented prefix tree known as
the FP-tree (see Figure 7) to represent the database. The
most common access pattern is to follow pointers inhead
of node linksto access the nodes labeled by the same item
(shown as dashed arrows in Figure 7). For each node ac-
cessed, the path from that node to the root is then traversed.

The FP-Growth algorithm has a high CPI and cache miss
rate; it is a memory bound computation. Several opti-
mizations have been proposed in [11], which include initial
database reorganization, tiling, etc. We propose to use lex-
icographic ordering, data structure adaptation, aggregation
and software prefetch to improve the performance. These
new techniques are complementary to the optimizations that



have been previously studied.
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A lexicographically orderingof the transactions for FP-
Growth provides two benefits: First, the tree construction
is more cache efficient. The tree building process inserts
transactions one by one. After the reordering, as each trans-
action shares many items with the previous one, most of the
nodes accessed during an insertion are already in the cache.
Second, pairs of parent node and child node, which are of-
ten accessed together during later traversals, are likely to be
stored next to each other.

A useful data structure adaptationis to represent the
item ID of a node with fewer bytes, using differential en-
coding: one stores the difference between the local item ID
and the ID of the parent node; this can usually be stored in
a single byte, with an escape code to handle the exception
cases. This reduces the node size and memory requirements
dramatically.

Aggregationcan be used in FP-Growth to improve the
spatial locality of tree traversal. As nodes that are sharedbe-
tween paths need to be copied, the aggregated tree requires
more memory. We find that, when combined with data
structure adaptation, the memory requirements are moder-
ate.

Prefetch pointerscan also be inserted to helpsoftware
prefetch.

4.4. Optimization results

We evaluate our ALSO patterns by applying them to fre-
quent pattern mining kernels and benchmark them on two
different platforms. Table 5 shows the configuration of the
two systems. We use two synthetic data sets generated by
the IBM Quest Dataset Generator, one real data set called
WebDocs [22], and another real data set called AP from the
Text Research Collection [1]. Table 6 shows the data sets
and the support that we use in the evaluation. We choose
WebDocs and AP, because other available real world data
sets are too small.

Parameters M1 M2
Processor type Intel Pentium D 830

dual core 3GHz
AMD Athlon 64 X2
dual core 4200+

L1 cache per core 16KB D-cache 64KB D-cache
12KB trace cache 64KB I-cache

L2 cache per core 1MB 512KB
Memory 4GB 4GB

Table 5. Experimental platforms

The baselines of our speedup are the best implementa-
tion of FIMI’04: LCM, Eclat from FIMI’04 and an efficient
implementation of FP-Growth. The baseline running times
are listed in Figure 8. The speedup is based on overall exe-
cution time.

Figure 8 shows the speedup of the optimized LCM, Eclat
and FP-Growth on systems M1 and M2. In these figures,
Lexmeans the speedup we get after we lexicographically re-
order the initial database;Reorgrefers to the data structure
optimizations such as aggregation and compaction;Pref
refers to software prefetching;Tile andSIMD are the tiling
and SIMDization pattern respectively. We first apply each
ALSO pattern to each algorithm to see the benefit of a single
pattern. Then we test the performance for code that incor-
porates all applicable patterns. For each cluster of columns,
the second column from the right, labeledall, is the perfor-
mance after we apply all applicable patterns; the rightmost
column, labeledbest, is the best performance that we can
get by selectively applying the patterns. Most of the time
bestandall are the same, indicating that each of the opti-
mizations provides some benefit, when combined with all
others. In some cases, for example in Figure 8(a) data set
DS4, the best optimization is notall. Instead, it is the com-
bination of prefetch and data structure patterns. The texts
above the best bars show the combination of patterns that
yields thebestperformance.

We can immediately see that there is no single best algo-
rithm. For the baselines, the Eclat algorithm performs the
best on DS3, while for other data sets, LCM is the fastest
algorithm. The FP-Growth also has a competitive perfor-
mance, and in some cases is close to optimal.

We see an overall performance improvement for thebest
combination of patterns, ranging from1.05 to 2.1. We also
see a significant performance improvement for the applica-
tion of each individual pattern. To be specific, the lexico-
graphic ordering provides up to1.5 speedup. Prefetch gives

Parameters DS1 DS2 DS3 DS4
Name T60I10D300KT70I10D300KWebDocs AP
# transactions 300K 300K 500K 1.8M
Support used 3000 3000 50000 2000

Table 6. Data sets and support in the evalua-
tion



up to1.3 speedup. The SIMDization provides a speedup be-
tween1.25 and1.45 on M1. In FP-Growth, data structuring
technique, particularly, data structure adaptation and tree
aggregation gives a speedup of1.6. Tiling in LCM gives
a speedup of up to1.75. The tiling for FP-Growth has been
studied elsewhere [11], and yields a speedup of about2.

The effectiveness of optimizations is input dependent.
For the inputs shown in Figure 8(a), tiling in most cases
provides the most significant speedup to LCM, in particu-
lar, for DS1 and DS2, tiling produces a speedup of over 1.5.
In DS4, tiling, however, produces almost no speedup. Each
software optimization have some associated cost, which can
negate its benefit. DS4 is a very sparse data set, where
transactions containing one item are scattered over mem-
ory. In this sparse data set, tiling does not introduce much
data reuse. The lexicographic ordering is not performing
well in FP-Growth for DS4, because the data set contains
too many transactions, so that lexicographic ordering is very
time consuming.

In general, software prefetch and aggregation work bet-
ter for long linked data structure, as there is more potential
for latency reduction. E.g. in FP-Growth, a greater aver-
age transaction length would be an indication of deeper FP-
tree. Lexicographic ordering would work better if the order
of transactions in input database are random. One could
define a metric that capture the clustering of the input trans-
actions. Tiling would work better when the transactions are
clustered, as it tends to have more cache reuse in this case.

The optimization results are also platform dependent.
Figure 8(b) shows the same experiments as in Figure 8(a)
but on a different platform M2. Although optimizations
have similar impact on the performance, the magnitude is
different. In particular, in Figure 8(c) and Figure 8(d), the
SIMD performance of M2 is not so significant as that of
M1, providing less than 1.2 speedup for the best case.

Finally, the optimizations seem not to be independent.
Several optimizations may have the same objective (e.g.,
improving spatial locality). If one optimization is suffi-
ciently effective, then the other optimization may add little
value, while still incurring an overhead.

Our results show that for Eclat and for FP-Growth, there
is on each platform one code that is best for all inputs, while
LCM requires different codes for different inputs. However,
due to the small number of experiments one cannot attach
too much significance to this conclusion.

5. Related work

Since the introduction of frequent pattern mining, a large
number of of algorithms and implementations [2, 3, 14, 12,
7, 30, 34, 15, 21, 25, 33] have been proposed. Different
algorithms and implementations use significantly different
data representations and access them differently. Some al-
gorithms adapts algorithm’s data structures and traversing

order according to input features [21, 20, 24, 29].
Ghoting et al. [11] have studied the problem of ALSO for

some tree-based frequent pattern mining implementations.
They proposed cache conscious prefix-tree to improve spa-
tial locality and also enhance the benefits from hardware
cache line prefetch. Tiling is used to improve the temporal
locality. Targeting SMT processors, a thread-based decom-
position is used to ensure cache reuse between threads that
are co-scheduled at a fine granularity. We have included
some of these optimizations as patterns for completeness,
knowing that many of these optimizations are tied to tree
based implementations. However, we did not apply them in
our evaluation because we wanted to study the impact of the
newly proposed patterns. We believe that the new optimiza-
tions are complementary to existing ones.

In the database domain, optimizations have been pro-
posed for core database algorithms to improve cache per-
formance [5, 31]. Rao and Ross [26, 27] proposed two new
types of data structures: Cache-Sensitive Search Trees and
Cache-Sensitive B+ Trees. Studies [9, 10, 8] have shown
software prefetch could improve searches on B+ trees and
Hash-Join operations. Software jump-pointer prefetch has
been proposed and evaluated on intensive pointer bench-
marks [28], which yields an average speedup of 15%. Ail-
amaki et al. [4] examined DBMS performance on modern
architectures. They concluded that poor cache utilizationis
the primary cause of extended query execution time.

6. Conclusion and future work

In this paper, we have proposed various ALSO patterns
for frequent pattern mining. These patterns are effective and
generally applicable to various implementations of frequent
pattern mining algorithms. The patterns are not tied to par-
ticular implementations or applications and can be used in
other domains.

We have verified the applicability and effectiveness of
these patterns in three highly optimized frequent pattern
mining algorithms. Experimental results show that each
of the patterns that we used is beneficial, and there is a
good overall speedup of up to2.1. Combined with pre-
viously proposed optimization strategies [11], the overall
speedup could be even greater. This is quite impressive,
given that we started with implementations that had already
been carefully tuned. Surprisingly, the software prefetch
does not give us as much as we have expected, provid-
ing a speedup of1.3 for the best case. Although this is
consistent with some of the previous research on prefetch-
ing [28], it is far from the speedup up to2.9 in some existing
work [9, 10, 8]. There are two main reasons: First, in some
previous work, the speedup is evaluated for a particular ex-
ecution phase, rather than the whole application run time.
Second, previous research on prefetching used simulators
or non-commodity processors. We believe the moderate



0.8

1

1.2

1.4

1.6

1.8

2

2.2

DS1 DS2 DS3 DS4

lex
pref
reorg
tile
lex+reorg+pref+tile
best

all all

lex+tile

pref+reorg

(a) LCM on M1,baseline in seconds(77,169,90,36 )

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DS1 DS2 DS3 DS4

lex
pref
reorg
tile
lex+reorg+pref+tile
best

all

all

all
lex+pref

+reorg

(b) LCM on M2, baseline (74,159,93,35 )

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

DS1 DS2 DS3 DS4

simd lex simd+lex best

all
all

all

all

(c) Eclat on M1, baseline(137,270,50,751 )

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

DS1 DS2 DS3 DS4

simd lex simd+lex best

all
all

all all

(d) Eclat on M2, baseline (142,285,50,887 )

0

0.5

1

1.5

2

DS1 DS2 DS3 DS4

reorg
lex
pref
lex+pref+reorg
best

pref+

reorg
pref+reorg

pref+reorg

pref+reorg

(e) FP-Growth on M1, baseline (157,345,94,50 )

0

0.5

1

1.5

2

DS1 DS2 DS3 DS4

reorg
lex
pref
lex+pref+reorg
best

reorg

reorgreorgreorg

(f) FP-Growth on M2, baseline (135,293,89,46 )

Figure 8. Speedup of LCM, Eclat and FP-Growth on M1 and M2

speedup for software prefetching is normal for commodity
processors.

For completeness, we mentioned some other optimiza-
tions proposed in the literature; however, we did not include
them in our evaluation, as these optimizations have shown
effectiveness in previous work and we wanted to focus on
the new patterns and those patterns that have never been ap-
plied in this domain. We believe the patterns that we have
applied in the evaluation are complementary to those that

have already been studied.

Our work shows that it is not only the case that one algo-
rithm is not always best, but also it is not always the same
set of transformations that most benefit a code. The right
set of transformation depends both on the input and on the
system architecture. We expect to explore in future work
the problem of selecting an optimal set of transformations,
given the input and machine parameters.
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