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GPU becomes more powerful
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Use of GPU for non-graphics applications

z GPGPU (General purpose computation on GPUs)
z Goal: make the flexible and powerful GPU available to developers

as a computational coprocessor.

z Difficulties of GPGPU
z Unusual programming model
z Programming idioms tied to computer graphics
z Underlying architecture evolves fast 
z Architecture internals largely secret
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Automatic library generation system

z Automatic library generation can help
z Generate high-performance libraries by empirical search

z Successful example systems on CPUs:
z ATLAS 

z Whaley, Petitet, Dongarra
z Sparsity

z Im, Yelick, Vuduc
z FFTW

z Frigo, Johnson
z Spiral

z Puschel, Singer, Xiong, Moura, Johnson, Padua
z Adaptively tuned sorting library

z Li, Garzaran, Padua
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Our work

z Implemented a high-performance matrix multiplication 
library generator for GPU
z An “ATLAS for GPU”

z Main contributions:
z The first automatic library generation system for GPUs
z Identifies several tuning strategies unique for GPUs
z Implements  a customized search-engine
z The automatically generated code has comparable 

performance with expert manually tuned version.
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GPU architecture

z Graphics pipeline

z Programmability was introduced into two stages
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z Another view of GPU architecture

z Most horsepower of GPGPU comes from the “fragment processors”
z The same “shader” runs synchronously on all fragment processors
z Every fragment processor can execute SIMD instructions on the 4 

channels of a pixel.

GPU architecture
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GPU programming model

z Stream processing model
z The same kernel program (shader) operates on streams of data.
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Unusual features/constraints of GPU program

z SIMD instructions with smearing and swizzling
z R2 = R1.abgr * R3.ggab

z Limit on instruction count
z Limit on output
z Limit on branch instruction
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Matrix CMatrix A

Matrix B

GPU algorithms for matrix multiply

z Straightforward mapping of triply nested loop onto GPU
z Store two input matrices (A and B) as two textures
z Store the resulting matrix C in the frame buffer.
z Each execution of the shader program outputs 

one element of C 
z Fetches one row from matrix A
z Fetches one column from matrix B
z Computes the dot product. Save result to C

z Problems:
z No data reuse in the shader

=> poor performance
z Shader length might exceed instruction limit 

if loop is unrolled due to the lack of branch 
instruction
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Tuning for multi-render-targets

z “multi-render-targets”:
z allows a shader to simultaneously write to multiple buffers

z Tuning strategy:
z Take advantage of “multi-render-targets” to improve data-

reuse
z Algorithm with multi-render-targets:

z Divide matrix C into mxn sub matrix blocks
z Each of them will be a render-target
z A and B are logically divided too

z Each fragment program
z Fetches m rows from matrix A
z Fetches n columns from matrix B
z Computes mxn dot products

z Downside:
z The shader require more temporary registers
z Using multi-render-target has performance

overhead

Matrix A

Matrix B

Matrix C
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Tuning for SIMD instruction with data packing

Matrix A

Matrix B

Matrix C

z Fragment processor supports SIMD instructions
z Tuning strategy:

z Use SIMD instruction to improve performance
z Use smearing and swizzling to do “register tiling”

to improve data reuse
z Algorithm of tuning for SIMD instruction with 

data packing
z Packing four elements into one pixel

z Two schemes: 1x4 vs. 2x2
z Each fragment program (1x4 scheme)

z Fetches one row from matrix A
z Fetches four columns from matrix B
z Perform a series of vector by matrix product

z Question:
z What packing scheme is the best

in performance?
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z Problem:
z GPU’s limit on instruction count prevents the dot product to be 

completed in one pass
z Strategy:

z Partition the computation into multiple passes
z Algorithm with multiple passes:

z Each fragment program
z Fetches a part of a row from matrix A
z Fetches a part of a column from matrix B
z Perform a dot product to get a partial sum

z Iterate multiple times to get the final result
z Downside

z Multi-pass results in expensive overhead in 
copying intermediate results

Tuning the number of passes

Matrix A

Matrix B

Matrix C
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An automatic matrix-multiply generation system

z An automatic matrix multiply generation system, which 
includes:
z A code generator:

z Generate multiple versions in high level BrookGPU language, 
which will be compiled into low level code.

z A search engine:
z Searches in the implementa-

tion space for the best version
z A performance evaluator:

z Measure performance of
generated code 
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Tuning parameters

z Generated code combines the previous tuning strategies
z Tuning parameters

z “mrt_w”, “mrt_h”
z How to divide matrix C

z “mc_w”, “mc_h”
z How to pack data to use SIMD

z “np”
z How many iterations executed in 

each pass
z “unroll”

z Whether or not to use branch instructions
z “compiler”

z To use “cgc” or “fxc” compiler
z “shader”

z To use DirectX backend with “ps20”, 
“ps2a”, “ps2b”, “ps30”, or use OpenGL 
backend with “arbfp”, “fp30”, “fp40”

Matrix A

Matrix B

Matrix C
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Search strategy

z Search in an exponential space is time-consuming.
z Two techniques employed to speed up the search

z Space pruning
z Limit the search range of parameters based on problem-specific heuristics

z Search in phases
z Search parameters in phases
z Search order:

1: For each compiler value
2: For each profile value
3: For each unroll value
4: Search np in power of two values
5: For each mc_* value
6: For each mrt_* value
7:                                    Evaluate Performance
8:                    Recursively search np in both sides of

best np found in step 4.

z The search time reduces dramatically
z from 53 days in theory to 4 hours in practice, with no significant performance 

loss.
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Performance data

z Compare with two expert hand-tuned implementations
z Part of GPUBench developed at Stanford University
z Implemented with carefully crafted assembly code

z Comparable performance on 
four GPU platforms
z On two platforms

z beats hand-tuned by 8% and 15%
z On the other two platforms

z achieves 56% and 70% of 
hand-tuned version.

Searched70%

56%

115%
107%
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Performance penalties of using a high level language

z One reason for lower performance than manual tuning:
z Overhead in using the high-level BrookGPU language.

z Compare the performance of the same algorithm
implemented in
z BrookGPU
z Assembly code
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Potential future research directions

z Improve high-level BrookGPU’s performance
z Generating more libraries for GPU

z Signal processing (FFT)
z Numerical libraries
z Sorting library
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