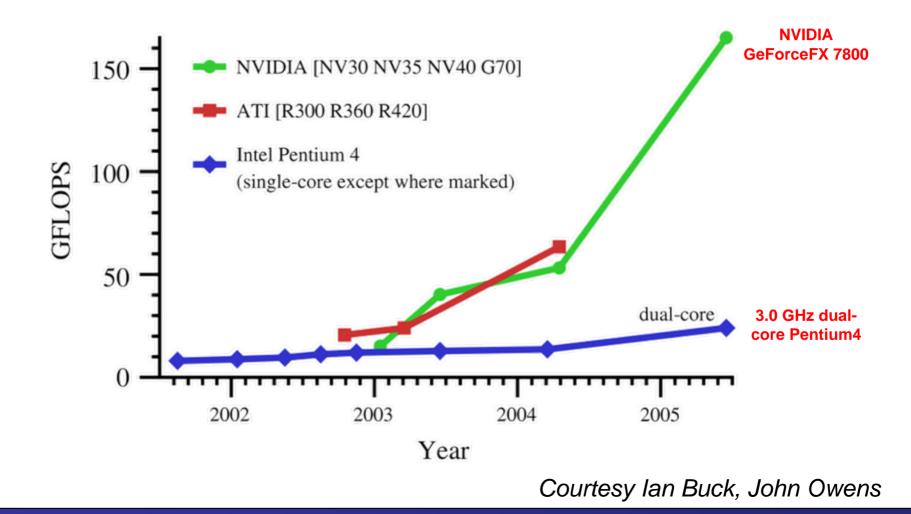
Automatic Tuning Matrix Multiplication Performance on Graphics Hardware

Changhao Jiang (cjiang@cs.uiuc.edu) Marc Snir (snir@cs.uiuc.edu)

University of Illinois Urbana Champaign

GPU becomes more powerful



1

Use of GPU for non-graphics applications

- GPGPU (General purpose computation on GPUs)
 - Goal: make the flexible and powerful GPU available to developers as a computational coprocessor.
- Difficulties of GPGPU
 - Unusual programming model
 - Programming idioms tied to computer graphics
 - Underlying architecture evolves fast
 - Architecture internals largely secret

Automatic library generation system

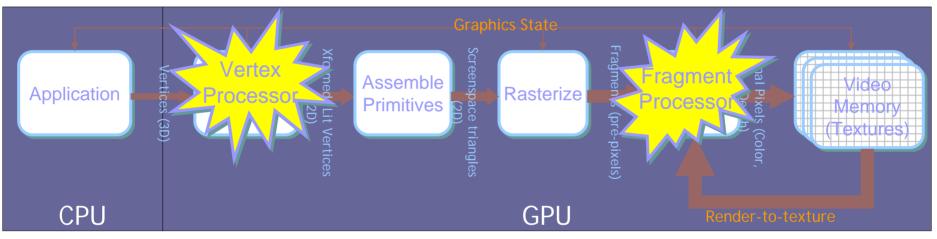
- Automatic library generation can help
 - Generate high-performance libraries by empirical search
- Successful example systems on CPUs:
 - ATLAS
 - Whaley, Petitet, Dongarra
 - Sparsity
 - Im, Yelick, Vuduc
 - FFTW
 - Frigo, Johnson
 - Spiral
 - Puschel, Singer, Xiong, Moura, Johnson, Padua
 - Adaptively tuned sorting library
 - Li, Garzaran, Padua

Our work

- Implemented a high-performance matrix multiplication library generator for GPU
 - An "ATLAS for GPU"
- Main contributions:
 - The first automatic library generation system for GPUs
 - Identifies several tuning strategies unique for GPUs
 - Implements a customized search-engine
 - The automatically generated code has comparable performance with expert manually tuned version.

GPU architecture

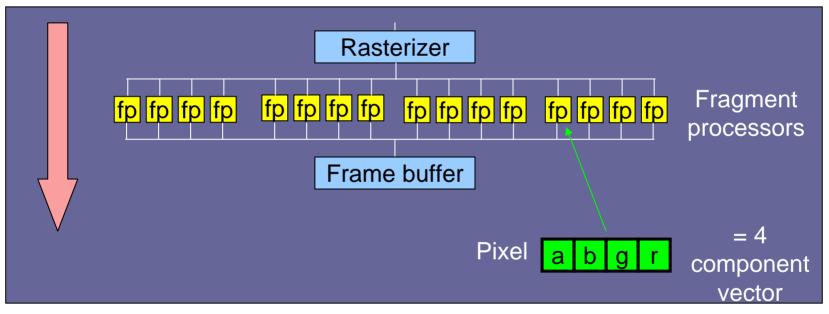
• Graphics pipeline



Courtesy David Luebke Programmability was introduced into two stages

GPU architecture

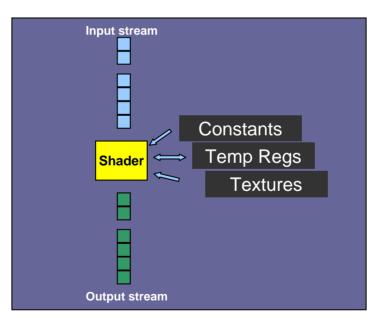
Another view of GPU architecture



- Most horsepower of GPGPU comes from the "fragment processors"
- The same "shader" runs synchronously on all fragment processors
- Every fragment processor can execute SIMD instructions on the 4 channels of a pixel.

GPU programming model

- Stream processing model
 - The same kernel program (shader) operates on streams of data.



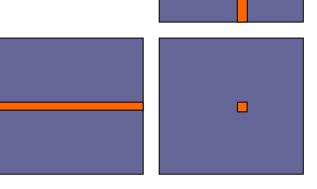
Unusual features/constraints of GPU program

- SIMD instructions with smearing and swizzling
 - *R*2 = *R*1.*abgr* * *R*3.*ggab*
- Limit on instruction count
- Limit on output
- Limit on branch instruction

GPU algorithms for matrix multiply

- Straightforward mapping of triply nested loop onto GPU
 - Store two input matrices (A and B) as two textures
 - Store the resulting matrix C in the frame buffer.
 - Each execution of the shader program outputs one element of C
 - Fetches one row from matrix A
 - Fetches one column from matrix B
 - Computes the dot product. Save result to C
- Problems:
 - No data reuse in the shader
 => poor performance
 - Shader length might exceed instruction limit if loop is unrolled due to the lack of branch instruction

Matrix **B**

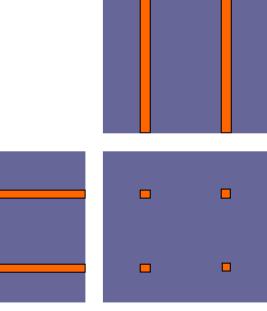


Matrix A

Matrix C

Tuning for multi-render-targets

- "multi-render-targets":
 - allows a shader to simultaneously write to multiple buffers
- Tuning strategy:
 - Take advantage of "multi-render-targets" to improve datareuse
- Algorithm with multi-render-targets:
 - Divide matrix C into mxn sub matrix blocks
 - Each of them will be a render-target
 - A and B are logically divided too
 - Each fragment program
 - Fetches m rows from matrix A
 - Fetches n columns from matrix B
 - Computes mxn dot products
- Downside:
 - The shader require more temporary registers
 - Using multi-render-target has performance overhead



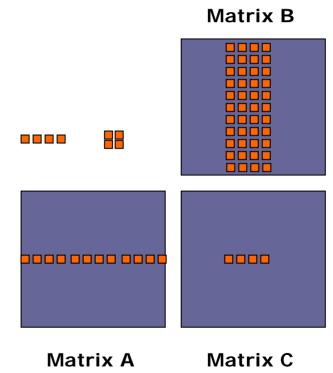
Matrix A

Matrix C

Matrix B

Tuning for SIMD instruction with data packing

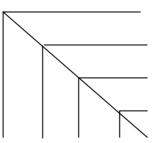
- Fragment processor supports SIMD instructions
- Tuning strategy:
 - Use SIMD instruction to improve performance
 - Use smearing and swizzling to do "register tiling" to improve data reuse
- Algorithm of tuning for SIMD instruction with data packing
 - Packing four elements into one pixel
 - Two schemes: 1x4 vs. 2x2
 - Each fragment program (1x4 scheme)
 - Fetches one row from matrix A
 - Fetches four columns from matrix B
 - Perform a series of vector by matrix product
- Question:
 - What packing scheme is the best in performance?



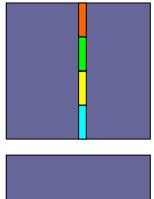
Tuning the number of passes

- Problem:
 - GPU's limit on instruction count prevents the dot product to be completed in one pass
- Strategy:
 - Partition the computation into multiple passes
- Algorithm with multiple passes:
 - Each fragment program
 - Fetches a part of a row from matrix A
 - Fetches a part of a column from matrix B
 - Perform a dot product to get a partial sum
 - Iterate multiple times to get the final result
- Downside
 - Multi-pass results in expensive overhead in copying intermediate results

Matrix **B**



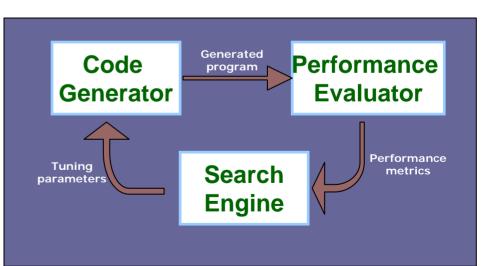
Matrix A



Matrix C

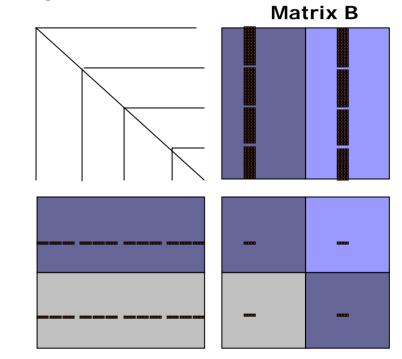
An automatic matrix-multiply generation system

- An automatic matrix multiply generation system, which includes:
 - A code generator:
 - Generate multiple versions in high level BrookGPU language, which will be compiled into low level code.
 - A search engine:
 - Searches in the implementation space for the best version
 - A performance evaluator:
 - Measure performance of generated code



Tuning parameters

- Generated code combines the previous tuning strategies
- Tuning parameters
 - "mrt_w", "mrt_h"
 - How to divide matrix C
 - "mc_w", "mc_h"
 - How to pack data to use SIMD
 - "np"
 - How many iterations executed in each pass
 - "unroll"
 - Whether or not to use branch instructions
 - compiler"
 - To use "cgc" or "fxc" compiler
 - "shader"
 - To use DirectX backend with "ps20", "ps2a", "ps2b", "ps30", or use OpenGL backend with "arbfp", "fp30", "fp40"



Matrix A

Matrix C

Search strategy

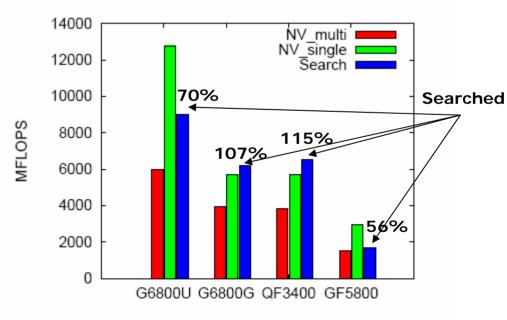
- Search in an exponential space is time-consuming.
- Two techniques employed to speed up the search
 - Space pruning
 - Limit the search range of parameters based on problem-specific heuristics
 - Search in phases

7:

- Search parameters in phases
- Search order:
 - 1: For each compiler value
 - 2: For each *profile* value
 - 3: For each *unroll* value
 - 4: Search *np* in power of two values
 - 5: For each *mc*_* value
 - 6: For each *mrt_**value
 - Evaluate Performance
 - 8: Recursively search *np* in both sides of best *np* found in step 4.
- The search time reduces dramatically
 - from 53 days in theory to 4 hours in practice, with no significant performance loss.

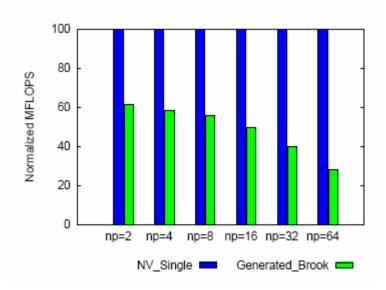
Performance data

- Compare with two expert hand-tuned implementations
 - Part of GPUBench developed at Stanford University
 - Implemented with carefully crafted assembly code
- Comparable performance on four GPU platforms
 - On two platforms
 - beats hand-tuned by 8% and 15%
 - On the other two platforms
 - achieves 56% and 70% of hand-tuned version.



Performance penalties of using a high level language

- One reason for lower performance than manual tuning:
 - Overhead in using the high-level BrookGPU language.
- Compare the performance of the same algorithm implemented in
 - BrookGPU
 - Assembly code



Potential future research directions

- Improve high-level BrookGPU's performance
- Generating more libraries for GPU
 - Signal processing (FFT)
 - Numerical libraries
 - Sorting library