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Those who do not remember the past are condemned to relive it . . .  
Santayana 
. . .unless they act randomly. 

1. I n t r o d u c t i o n  

The amortized analysis of on-line algorithms is of interest in a variety of situations 
[1, 6, 7]. An application of great practical importance is the caching problem [4, 7] - the 
replacement algorithm for lines in a cache, or pages in a virtual memory. The standard 
algorithm suggested in the literature is Least Recently Used (LP~U). The analysis of LRU 
[7] shows that it achieves optimal worst-case performance (this will be made precise in 
section 2). 

From a practical standpoint, an important requirement of an on-line caching algo- 
rithm is that it maintain very little state information (memory) from the past. Such 
memory is expensive and slow to update in hardware, as pointed out by [8]. Previous 
theoretical studies have not touched on this issue of the memory resources required by 
an on-line caching algorithm. For instance, the well-known LRU a~gorithm has a sub- 
stantial memory requirement (this will be made precise in section 2). An alternative 
to large memory is randomization. We refer here to algorithms that make probabilis- 
tic choices during execution, with their performance studied under worst-case inputs. 
On-line randomized algorithms have received scant attention in the past. 

It section 2 we show that the worst-case performance that is achieved by LRU is 
also achieved by a very simple randomized algorithm, namely random replacement. This 
algorithm is memoryless - it uses no information from the past. However, it uses log m 
random bits, where m is the cache size, at each eviction. We show that there is a 
direct tradeoff between the number of memory bits and the number of random bits used 
by optimal on-line cache replacement algorithms. We also show that no memoryless 
algorithm performs better than random replacement. 

*IBM Research Division, T.J.Watson Research Center, Yorktown Heights, NY 10598, USA. 



688 

In section 3 we extend the random replacement Mgorithm to give a solution to the 
generalized cache problem, a problem of practical interest for which no provably good 
algorithm was known before. 

On-line algorithms typically use memory to maintain statistics on the cost of past 
events. This is replaced in randomized, memoryless algorithms by probabilistic processes 
whose distributions implicitly reflect these statistics. In section 4 we present two instances 
of this technique: deterministic graph traversal algorithms are replaced by probabilistic, 
memoryless random walks, and counters are replaced by "probabilistic counters". This is 
used to derive simple memoryless algorithms for two types of on-line problems. We derive 
a natural algorithm for the k-server problem [6] that  is memoryless and randomized. We 
give a bound on the performance of this algorithm for the cases k = 2 and k = n - 1, 
and present a tantMizing conjecture which if true would yield a bound on our algorithm's 
performance for arbitrary k. This would be significant, for there is no known provably 
good algorithm for arbitrary k. We also derive memoryless algorithms for metrical task 
systems [1]. 

2. Caching Algorithms 

2.1. Convent ions  

We begin our study of caching algorithms using a simple two-level store as the model 
for caches; the model is essentially that  of Sleator and Tarjan, with added provisions for 
studying randomized algorithms and the memory required by on-line Mgorithms. There 
is a main memory consisting of a (potentially infinite) number of locations, each of which 
contains an item. The cache consists of m locations, each capable of storing one item. 
The caching algorithm is given a sequence v l ,v2 , . . . ,  vn of references to items. A hit 
occurs on the ith reference if vi is one of the items in the cache at the end of reference 
i - 1; otherwise, a miss is said to occur. When a miss occurs on the reference to vi, an 
item is evicted from one of the cache locations, and item vi is loaded in its place. The 
cache is initially "empty",  i.e. contains none of the referenced items. 

We assume that  the cache has a finite-state control, with a set S of states. Formally, 
an on-line cache algorithm is defined by two functions: 

Hit : [1..m] x S --* S 

If a hit occurs at location i when in state s, the state is updated to Hit(i, s). 

Miss : S -+ [1..m] x S 

If a miss occurs in state s then item at location i is evicted (and the missing item is 
loaded instead); the state is updated to s', where (i, s') = Miss(s). We adopt a natural 
measure of the state information maintained by the algorithm: we define a quantity we 
call its memory to be log 2 IS[. An algorithm whose memory is 0 is deemed memoryless. 

In a randomized algorithm, the state transitions may be probabilistic. Thus, Hit(i, s) 
is a probability distribution on S, and Miss(s) is a probability distribution on [1..m] x S. 
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EXAMPLES: 

1. LRU: Whenever a miss occurs, the least recently referenced item in cache is evicted. 
The state encodes the order of the last reference to each item in the cache, and is updated 
accordingly at each reference. The algorithm is deterministic and uses IS] = rn! states 
(and thus O(m log m) memory) for a cache with m locations. 

2. RANDOM: Whenever a miss occurs a cache location is chosen at random and the 
item in it is evicted. The algorithm is memoryless but uses log m bits of randomness per 
miss. 

3. FIFO: Whenever a miss occurs the item that  has been in the cache for the longest 
period is evicted. The scheme can be implemented using a mod rn counter to point to 
the item to he evicted at the next miss; the counter is incremented following the eviction. 
This is a deterministic algorithm that  uses m states, i.e., log m bits of memory. 

4. FWF:  (Flush-When-Full, [5]) Whenever a miss occurs an invalid entry is evicted, 
and the newly loaded entry is marked as valid; if there are no invalid entries then all 
entries are invalidated. The scheme can be implemented by storing valid entries contigu- 
ously, and using a rood m counter (log rn bits of memory) to point to the last valid entry. 
The first invalid entry is evicted on a miss. 

5. RFWF:  (Random-Flush-When-Full,  [4]) Same as above, except that  a random 
invalid entry is selected for eviction. The algorithm uses m memory bits, and up to 
log m random bits per miss. 

Given a caching algorithm A, we denote by CAm(V1,..., vn) the number of misses on 
the sequence of accesses v l , . . . ,  vn, when algorithm A is used on a cache of size m. If 
the algorithm is randomized, this number is a random variable. 

We compare on-line algorithms (where the state at the end of the i th reference depends 
only on the first i references) to off-line algorithms, where the state after the i th reference 
may depend on the entire sequence (including references vj for j > i). In particular, we 
use as a yardstick the optimal off-line algorithm, which produces the minimum number of 
misses on every sequence of references: whenever a miss occurs, the item in cache whose 
next reference is furthest into the future is evicted. It is instructive to compare an on- 
line algorithm A working with a cache containing M locations with an off-line algorithm 
working with a cache containing m locations, m _~ M, on any reference sequence. We 
denote by Cm(vl, . . . .  vn) the number of misses of the optimal algorithm. 

Following [5], we define a deterministic algorithm A to be c(M,m).cornpetifive if for 
any infinite sequence of references Vl, v2 • • • 

l imsup C ~ ( v l , . . . ,  vn) - c(M, m) .  Cm(vl , . . . ,  v,~) < oo (1) 

It is easy to show that  A is c(M, m)-compet i t ive  if and only if 

C~l(v l , . . . ,  vi) <_ c(U, m) .  Cm(vl , . . . ,  v,) (2) 

for any finite sequence v l , . . . ,  vi of references (starting with an empty cache). We define 
the competitiveness coefficient of an algorithm A to be the least upper bound on c(M, m) 
such that  (1) or (2) holds. 
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For a randomized algorithm one can give two different definitions of competitiveness. 
The first one corresponds to a situation where an adversary chooses a "worst-possible" 
sequence of references vl, v2, . . ,  for algorithm A; however, this sequence is chosen a priori, 
and does not depend on the actual random choices made during the execution of A. We 
think of these sequences as being generated by a "weak adversary". In other words, 
we assume that the reference sequence is not affected by the decisions of the caching 
algorithm. 

A randomized algorithm A is weakly c(M,m)-competitive if for any sequence of refer- 
ences vt, v2,. . ,  that has been fixed a priori, 

l i m s u p C A ( v l , . . . , v , )  - c ( M , m ) .  Cm(vl , .  . . ,  v , )  < c~ a.s. 
n " - + ~  

(almost surely, i.e. with probability one). The weak competitiveness coefficient is defined 
accordingly. 

The second definition corresponds to the situation where the adversary can choose 
each reference vi depending on any random choices made by the algorithm in serving 
the first i - 1 references. This corresponds to a situation where the pattern of (future) 
memory references may be affected by the (past) behavior of the caching algorithm. 
(If the caching algorithm is implemented in software, then this is true of the memory 
references of the'caching algorithm itself). Algorithm A is strongly c(M,m)-competitive 
if for any sequence of references generated by such an adversary (henceforth the "strong 
adversary" ), 

l i m s u p C A ( v l , . . . , v , , ) -  c ( U , m ) . C , ~ ( v l , . . . , v , ~ )  < oc a.s. 

Thus strong c-competitiveness implies weak c-competitiveness; the strong competitive- 
ness coefficient is defined accordingly. 

It is known [5, 7] that LRU, FIFO and FWF are M / ( M  - m + 1)-competitive, 
and that no deterministic algorithm has a lower competitiveness coefficient. We show 
later that this lower bound holds for the strong competitiveness coefficient of randomized 
algorithms. 

2 .2 .  T h e  P e r f o r m a n c e  o f  R A N D O M  

L e m m a  1: Let Xt, X2, . . .  be a sequence of random variables such that 

E[X~ l X~-~, . . . ,  X~] < ~ < O, a.s. Vi 

and cr2Xi < 3' < ~ ,  Vi. Then 

1). 

lim ~ Xi = -c~  a.s. 
i = 1  

T h e o r e m  2: The strong competitiveness coefficient of RANDOM is < M / ( M  - m + 
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Theorem 2 asserts tha t  RANDOM does as well as any deterministic algorithm, even in 
the face of a malicious adversary that  adapts the sequence of references to the random 
choices of the algorithm. 

P r o o f :  We use a potential  function to analyze the performance of RANDOM amor- 
tized over a long sequence of references. This is seen to correspond to a random walk on 
a line that  has a negative drift. Let Sin be the set of items that  RANDOM has in the 
cache (of size M)  after the ith reference; let S ° be the set of items kept in the cache (of 
size m) by the optimal algorithm after the ith reference. Let ti n be an indicator variable 
that  is 1 if RANDOM misses at reference i, and 0 otherwise; let t ° be similarly defined 
for the optimal algorithm. Let 

= is, Cisol 

and let A¢ i  = @i - @i-1. For any c > M / ( M  - m +  1), consider the sequence of random 
variables 

x ~  = t ~  - c .  t ° - c . / x ~ i .  

Then 

~ x,  = c ~ ( v , , . . . , v , ) - c . C , , , ( v , , . . . , v , ) - c . ~ , ,  +c. Vo. 
i - - ,  

But ~n _< m. Thus,  RANDOM is c -compet i t ive  if l imsup )'~4"=t Xi < c~ almost surely; 
we complete the proof  by showing that  this is indeed the case. We have four cases to 
consider: 

1. vi 6 Sff_,, v, e S°_1 (no misses). 
Then t/R = t ° = A ¢ i  = 0, and Xi = O. 

2. vi 6 S~_ 1, vi q~ S°_t (miss of optimal). 
Then t R = 0, t ° = 1, and Aq~i > 0. Thus Xi _ - c .  

3. vi q~ S~_,, vi 6 S°_, (miss of RANDOM). 
Then  t~ = 1 and t ° = 0. RANDOM evicts an i tem in SR_IAS°_,  with probabili ty 
~ i - 1 / M ,  resulting in A~i  = 0; otherwise, it evicts an i tem not in S°_,,  so that  A¢~ = 1. 
Thus 

r,[x~ 1 sg_,, s°_,, ~] = I - c ( M  - @ i - , ) / M .  

Since SO_, ¢ S~_,, ¢ i - ,  = IS?_, r lsY_,l  < m -  1, and so 

E[Xi[  R O S~_l,S~_l,vi] < 1 - c ( M - m +  l ) / M  < O. 

4. vi q~ S~_1, vi ~ S°i-1 (miss of both).  
Here t~ = t ° = 1. With probabili ty (~i -1  - 1)/M, RANDOM evicts one of the ¢ i -1  - 1 
items in R o S~_ 1 A that  = S~_ 1 is not evicted by the optimal algorithm, in which case A~i  1; 
otherwise, A~i  ---- 0. It  is easy to verify that  

cR co  v ,1 < 1 c ( M - r n +  l ) / M  <O. E[Xi I~ .~ - l ,~ i -1 ,  ,j _ - 

It is also easy to verify that  
[X~[ _< 2e, 
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so tha t  the variance of the r.v. Xi is uniformly bounded. Thus, the sequence of random 
variables X1, X 2 , . . .  fulfills the conditions of Lemma 1 (ignoring the Xi of case 1), and 
the theorem follows. [] 

We now show that  the bound of Theorem 2 cannot be improved, even under a weak 
adversary. 

L e m m a  3: Let W be the waiting time for success in a sequence of Bernoulli trials, 
with probabili ty of success p. Let Wk be the truncated variable defined by 

Then 

W i f W < k  
W k =  k i f W > k  

E[Wk] = ~(1 - (1 - p)k). 

T h e o r e m  4: The weak competitiveness coefficient of RANDOM is at least M / ( M -  
re+l). 

P r o o f :  Consider a sequence of references of the form 

ala2 . . .am ( b l a 2 . . . a m )  2 (b2a2.. .am)3. .  . 

where the ai and the bi are all distinct items; here (s) k denotes k repetitions of the 
sequence s. The  optimal  algori thm misses once on each segment (bia2. . .  am) k. At the 
beginning of any such segment, RANDOM contains at most m - 1  of the items appearing 
in tha t  segment. Let us define a near-miss to be a miss that  occurs when RANDOM has 
exactly m - 1 of these items in its cache. RANDOM succeeds on a near-miss if it does 
not evict any of these m -  1 items. RANDOM has at least one miss on each repetit ion of 
the pat tern  bia2. . ,  a,~ until it succeeds on a near-miss. The  probabili ty of a success on 
a nea~-miss is ( M  - m + 1) /M.  Hence, by Lemma 3, the expected number of near-misses 
is at  least ( M / ( M  - m + 1))(1 - ((m - 1)/M)k).  The claim follows. [] 

The last theorem can be strengthened to hold even if there are only M + 1 distinct 
items. Also, no memoryless algorithm achieves a bet ter  weak competitiveness coefficient; 
intuitively, when there is no information on which to base the choice of the evicted entry, 
random, equiprobable choice of an entry to evict is best. We formally prove the claim 
below, for the particular case M = m. 

T h e o r e m  5: Any memoryless on-line caching algorithm has weak competitiveness 
coefficient > m, when m = M.  

P r o o f  o u t l i n e :  A memoryless algorithm is a probabili ty distribution {pl, p2"" 'Pro } 
on the cache locations, where pi is the probabili ty of evicting the i tem in location i. 
Consider a randomly chosen sequence of references, consisting of a sequence of rounds. 
The kth round is of the form ( a l , . . . ,  a,~) k; the set of m items occurring at round k is 
obtained by choosing an i tem from round k - 1 uniformly at random and replacing it by 
a new item. 
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During each round, the adversary has one miss. Let a l , . . . ,  am be the items accessed 
at round k - 1, and let al,  • • . ,  a i -1 ,  &i, ai+l, . . . ,  am be the items accessed at round k. 
With probabili ty going to one as k -~ oo, the on-line algori thm starts round k with 
a l , . . . ,  am in cache. Assume, w.l.o.g., tha t  i tem ai occupies location i in cache. Given 
this, the algorithm misses during round k until it evicts the i tem in location i. Therefore, 

1 (1 pi)k). The expected number of misses the expected number of misses is > ~ ( 1  - - 

for i chosen uniformly at random (given that  al ,  • •. ,  a,~ are in cache at the start  of the 
round),  is >_ 1 / m ~ , ~ = l  K(ll - ( 1  - p i ) k ) .  This is minimized at m(1 _ ( _ ~ ) k )  (when all 

the pis are equal). Thus, the ratio between expected on-line cost and off-line cost for 
such randomly chosen sequence of references has limit > m. 

The result of the last theorem does not hold true for algorithms with memory: Fiat et 
a/.[4] have shown that  R F W F  has a weak competitiveness coefficient which is O(log m), 
when m = M.  

2 . 3 .  T r a d i n g  M e m o r y  f o r  R a n d o m n e s s  

Theorem 2 demonstrates that  the use of randomness obviates the need for any memory, 
while performing as competitively as the FIFO algorithm. Recall tha t  such a reduc- 
t ion/removal  of state information was our original motivation stemming from [8]. We 
r/ow study algorithms such as those suggested by [8], and show that  they forth a fam- 
ily of schemes that  are as competitive as FIFO and trade memory for randomness in a 
quantifiable manner.  

For the remainder of this section, we will focus on the case m = M = 2 k for some k. 
Then,  FIFO uses k bits of memory and no randomness, whereas RANDOM uses no state 
information and k bits of randomness per reference. Let Sa (m)  be the number of bits of 
memory maintained by an algori thm A, and R A ( m )  be the number of bits of randomness 
used by A per reference (we regard S A ( m )  and R A ( m )  as invariants of A that  do not 
change with i). Clearly, for any algorithm A, S ( m )  + R ( m )  >_ k (else A will not be able 
to address all its m cache locations, and the reference string could continually request 
items in S ° - S A ). 

T h e o r e m  6: Let i be an integer, 0 < i _< k. There is an m-compe t i t i ve  on-line 
algori thm A i such tha t  S A , ( m )  -- i and RA,(m) = k - i. 

The  family of algorithms A i bridges the gap between FIFO and RANDOM, trading 
randomness for space, and remaining m-compet i t ive .  

P r o o f :  Algorithm A i is defined as follows: Let I = 2 i and J = m / I .  Conceptually, 
the cache locations of A i are organized as an I x J matrix. We use a n / - b i t  counter that  
points to a row of this matrix.  On a miss, we do the following: we randomly evict one 
of the J items in the row pointed to by the counter (k - i bits of randomness suffice for 
this), and increment the counter mod I.  

To prove that  A i is m-compe t i t i ve  for all i, we use essentially the same argument as 
in Theorem 2 (using the same potential  function and random walk). The only difference 
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is that we look at the change in the position X of the random walk over a sequence of 
2 i misses instead of a single step at a time. [] 

Using an argument similar to that in Theorem 4, it can be shown that the weak 
competitiveness coefficient of A i is at least m for all 0 < i < k. The algorithms A i use 
the minimum possible total of space and randomness, in the spirit of [8]. 

3. T h e  General ized  Cache Prob lem 

We now consider a generalization of the problem studied in the previous section. As 
before, we consider a two-level store with a cache capable of holding m items at a time. 
In the generalized cache problem, an item x has a positive real weight w(x) associated 
with it. The significance of the weight is the following: in loading item x into the cache, 
an algorithm incurs a cost w(x). In measuring the competitiveness of an algorithm, 
we compare the cost it incurs over a sequence of references (rather than the number 
of misses) with the cost incurred by the optimal off-line algorithm. We denote the 
cost of an algorithm A working with a cache containing M locations on the reference 
sequence vl, v2, . . . ,  v, by C A(vl, v2, . . . ,  vn), and the cost of the OPTIMAL algorithm 
working with a cache containing m locations on this sequence by Cm(vl, v2,..., v,O. The 
competitiveness coefficient of an Mgorithm A is defined accordingly. Thus, the previous 
section dealt with the special unit cost case, where w(z) = 1, Vz. 

The generMized cache problem has applications to caching fonts in printers. The 
number of fonts that can be cached at a time in the printer is subject to a maximum, 
but fonts stored in larger files take longer to bring into the printer's cache. There are 
two noteworthy aspects of the generalized cache problem that distinguish it from the 
simple cache problem considered in the previous section: (1) it is non-trivial to find the 
optimal off-line schedule; (2) we know of no deterministic algorithm for the problem that 
is M/(M - m + 1)-competitive. 

We now present a randomized on-line Mgorithm for this problem, which we cM1 the 
HARMONIC Mgorithm. The Mgorithm behavior depends only on the weights of the 
items in cache. Let x l , . . . ,  xm be the items in cache when a miss occurs. The HAR- 
MONIC algorithm uses the following simple, probabilistic eviction rule: evict zi with 
probability p/where 

1/w(~i) 
rt~ Pi = E j = I  1/w(zj) 

T h e o r e m  7: The strong competitiveness coefficient of the HARMONIC algorithm 
i s < M / ( M - m + l ) .  

Proof :  As in the proof of Theorem 2, we use a potential function to create a random 
walk on the real line that has a negative drift. Let S H be the set of items kept in the 
cache by HARMONIC after the ith reference, and S ° be the set of items kept by the 
optimal algorithm. Let 

m - 1  
¢bi = ~ w ( z ) - M  m + l  ~ w(x), 
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and AePi = Oi - O i - 1 .  Letting t ff denote the cost incurred by the HARMONIC algorithm 
in servicing the ith reference and *i ° the corresponding cost of the OPTIMAL algorithm, 
we define 

a M  . t o  _ f l A O i  , 
X i  = t ~ - M _ m +  1 

where a > fl > 1. We now proceed on the lines of the proof of Theorem 2, breaking the 
analysis up into two parts instead of considering four cases: 
1. The OPTIMAL algorithm evicts an item• We can assume that the OPTIMAL algo- 
rithm loads a new item only immediately before a reference to that item• Also, without 
affecting the analysis, we can charge the OPTIMAL algorithm for the item it evicts 
rather than for the item it loads; thus t H = w ( z i ) ,  if the OPTIMAL algorithm evicts zi 
on reference i (and 0 otherwise). 
2. The HARMONIC algorithm evicts an item on a miss, and is charged for the weight 
of the item it loads. 

We examine the effect of the two kinds of actions described above on the random walk 
~ = l  Xj. In particular, we examine the effect of either action on E[X/ [ S°_i, sH1,  vii. 
1. The OPTIMAL algorithm loads z and evicts z ' .  Then t ° = w ( z ' ) ,  and A¢i  _< 
w ( z ' ) M / ( M  - m + 1). (The equality is realized when z' e sH1 AS°_1 and z ~ sH1).  
Thus the contribution of the OPTIMAL algorithm's action to E[Xi IS°_:, s H : ,  vi] is < 0. 
2. The HARMONIC algorithm misses on a reference to item z, so that t H = w(x). Then 
[sH:  N S °  a[ <_ m -  1 and I s H : -  S ° : [  >_ 1. Thus 

S ° S H E[± il i_ : ,  i - l ,Vd  = 
S H m - -  S H I  _:NS°_ll 1 

~,~es~_l  1 / w ( y )  ÷ M - m + 1 ~ e s ~ _ ~  1 / w ( y )  > w ( z ) .  

S ° S H Thus, the contribution of the HARMONIC algorithm's action to E[Xi  I i-1, i-1, vi] is 
also < 0. 

Applying Lemma 1 to the sequence of random variables Xi, we conclude that almost 
surely 

n 

tim ~-'~Xi = -oo ,  
i = 1  

so that almost surely 

a M  
l imsupCH(v: ' "  " , - - . o o  . , vn ) -- M - m +  1 • C m ( v : , . . . ,  v . )  < oo 

and this yields the result. [] 

The last result is valid even if there are infinitely many distinct weights; it is only 
required that all weights are in a bounded range 0 < a < w e i g h t  < b < co. Note that 
RANDOM is exactly the HARMONIC algorithm restricted to the special case w ( x )  = 
1, Vx. Thus, by Theorem 4, the weak competitiveness coefficient of the HARMONIC 
algorithm is > M / ( M  - m +  1). In fact, this lower bound holds true for any set of at least 
M + 1 distinct items, when M = m. We require the following lemma from probability 
theory: 
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L e m m a  8: Let X o ,  X 1 ,  • • • be a sequence of positive random variables with uniformly 
bounded expectations. Let t be a stopping time for the sequence; t ranges over the natural 
numbers and the event It = i] depends only on X 0 , . . . ,  Xi. Assume that  

Pr(t  = i [ X 0 , . . . , X i _ l )  = E(Xi [ X o , . . . , X i _ 1 ) .  

Then 
t 

E ( C  Xi) = 1. 
i=0  

T h e o r e m  9: Let M = m. The weak competitiveness coefficient of the HARMONIC 
algorithm C ( M ,  M )  > M ,  even when restricted to any set of M + 1 items. 

P roo f i  Let x0 , . . .  , X M be any M + 1 items. Let wi = w ( x i ) .  Consider a sequence 
that  consists of successive rounds of references to x 0 , . . . ,  XM-t; assume the HARMONIC 
algorithm starts with XM in cache, and xo out of cache. Let t be the number of misses 
on the sequence. Let i ( j )  be the index of the j - th  i tem evicted; i ( t )  = M .  

Without  loss of generality, we are charging the HARMONIC algorithm for the items 
it evicts. The cost of HARMONIC on this sequence is 

~ w~(j).  
j = l  

When the j - th  eviction occurs the cache contains all items, with the exception of xi(j-1). 
Therefore, for j _< t, 

1 / w r  
Pr(i( j)  = r l i ( j  - 1)) = ~k# i ( j -1 )1 /wk  

if r # i ( j  - 1), zero otherwise. Accordingly, 

E[wi ( j )  l i ( j  - 1)1 = 

and 

Thus, 

M 
~ k e ~ ( j - 1 )  1 / w k  

1 / W M  
Pr(t = j l i ( j  - 1)) = ~ # i ( j - 1 )  1 / w k  

E[wi(j) I i ( j  - 1)] = M . WM . Pr(t = j I i ( j  - 1)). 

It follows, by the previous lemma, that  

t 

E [ ~  wi(j)] = M " WM.  
j = 0  

Consider now a sequence of accesses consisting of successive rounds 
( S o ) n O , ( S 1 ) n l , . . .  , (S ( imod(M+O))  n ' ,  where Sj  = ( z o , . . . ,  x j - 1 ,  z j + l , . . . ,  X M ) .  Let c < 1 
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be a positive constant. Let Ai be the event "X(imod(M+l) ) is not in cache at the end of 
the i-th round". Let C~ be the cost of HARMONIC for the i-th round. By taking the 
sequence no, h i , . . ,  to grow sufficiently fast we can obtain that almost surely -~Ai occurs 
only finitely many times, and almost surely the cost of HARMONIC at the i-th round is 
larger than cMw(imod(M+l)), with finitely many exceptions. Thus, almost surely 

limsup E CH - cM E W(im°d(M+l)) ~- O. 
n - * o o  i = 0  i = 0  

On the other hand, the cost of OPTIMAL on the i-th round is W(imod(M+l) ). 

D 

4.  R a n d o m  W a l k s  a n d  P r o b a b i l i s t i c  C o u n t e r s  

The idea underlying the randomized algorithms of the previous sections is that a de- 
terministic process that explicitly remembers statistics from the past can be replaced 
by a probabilistic process whose distribution implicitly remembers such statistics. For 
example, FIFO ensures that once an item is brought into the cache, it is not evicted 
before m further misses occur. RANDOM does the same in a probabilistic sense: an 
item once brought into the cache remains there for a number of misses whose expecta- 
tion is m. The deterministic counter of FIFO is replaced by a "probabilistic counter" in 
RANDOM. We provide a second example below in the setting of on-line graph traversal, 
an abstract problem defined in section 4.1. This abstraction proves useful when we sub- 
sequently analyze algorithms for server systems (an abstraction due to Manasse et hi. [6] 
that captures caching as a special case) and for the metrical task systems of Borodin et 
al. [1]. 

4 .1 .  T r a v e r s a l s  a n d  R a n d o m  W a l k s  

Consider a complete graph G with n nodes {1 , . . . ,  n}. A cost d ( i , j )  is associated with 
each edge (i, j). We assume that the distance matrix (d(i, j ) )  is metrical, (i.e. is sym- 
metric and satisfies the triangle inequality). All distances are finite. An instance of the 
traversal problem is defined by a sequence i l , /2 , . . . , i v  of nodes in G. The algorithm 
starts at some initial node i0 and moves along the edges of the graph until it reaches il, 
then moves until it reaches i2, and so on. The algorithm does not know the identity of 
the node ik until it reaches that node, for any k. The next move of the algorithm may 
depend on its current state and location, but not on the next node in the sequence. 

We denote by c A ( i l , . . . ,  it) the cost of the path traversed by algorithm A, when vis- 
iting nodes i l , . . . ,  it. We compare this cost to the length C ( i l , . . . ,  it) = ~'~=1 d(is-1, is) 
of the optimal path (i0,il), ( i l , i2 ) , . . . ,  ( i t - I ,  it)- A deterministic algorithm A is e- 
competitive on graph G if for any infinite sequence of nodes il, i2 , . . .  

l i m s u p C A ( i l ,  . . ., it) - c.  C( i l ,  . . ., it) < oo 
r -.* OO 
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The other definitions of section 2.1 are extended in a similar manner. Formally, a traversal 
algori thm with a set S of states is a function 

S × Current Node --+ S x New Node. 

As before, we define an algorithm to be memoryless if logIS[ is zero. Thus the next 
move of a memoryless algorithm does not depend on the past in any way - -  it does not 
depend on previously visited nodes, or on the number of times it has previously been at 
the current node. Note that  there is no difference between a weak and a strong adversary 
for randomized memoryless algorithms. 

Let Jolt,... it-1 be a sequence of nodes in which each node of G occurs at least once. 
A deterministic traversal algorithm is defined by visiting the nodes of G in the order 
defined by the sequence. The state of the algorithm is the index s, and if the algorithm 
is at node i~ in state s, then it next moves to node i(s+t)modr, and state (s + 1) mod r. 
We cMl such Mgorithm a cyclic traversal algorithm. The  following result is proven in [1]. 

T h e o r e m  10: For any graph on n nodes there is a cyclic traversal algori thm which 
is 4(n - 1)-competitive. 

Cyclic traversal algorithms are not memoryless because they remember the index s. A 
probabilistic traversal algorithm is obtained by executing a random walk on the graph. We 
associate a transition probability p(i, j) with each edge (i, j ) ;  p(i, j) is the probabili ty tha t  
the algori thm moves to node j ,  when at node i. Thus, ~-~j¢i p(i, j )  = 1. The algori thm 
executes a random walk on the graph, according to these transition probabilities. Notice 
tha t  a probabilistic traversal algorithm is memoryless. Let H(i, j) be the expected cost 
of a random walk tha t  starts at node i and ends when node j is first reached. Define the 
expansion of the random walk to be maxi,j H(i, j)/d(i, j). 

L e m m a  11: A probabilistic traversal algorithm based on a random walk with ex- 
pansion c is c-competitive. 

The HARMONIC random walk has transition probabilities 

1/d(i,j) 
p(i, j) = Ek#i lid(i, k) " 

The  probabili ty of using a particular outgoing edge from a node is inversely proportional  
to its cost. This  process has been studied in [2], where the following result is proved 
about  a HARMONIC walk on any graph with m edges. 

T h e o r e m  12: The  HARMONIC random walk has expansion _~ 2m. 

The  last result is tight; equality is achieved for certain graphs. When the distance 
matr ix  (d(i,j)) is metric, m = n ( n -  1)/2. The HARMONIC random walk does not 
yield, in general, the least possible expansion. We conjecture the following holds true. 



699 

C o n j e c t u r e  13: For any n-node graph there is a random walk with expansion O(n). 

We can prove this conjecture for a few special cases - in particular, for the case 
where where the distance matrix is Euclidean: x l , . . . ,  z~ are n points in R d for fixed 
d, and d(x~, xj) is the Euclidean distance between xi and xj. This follows from the fact 
that  for any set of points in R d, there exists a linear-sized graph G spanning them such 
that  the shortest path in G between xi and xj is _< cd • d(z~, zj)  Vi, j for a constant Cd 
depending on the dimension d of the space (Chew [3] provides an introduction to such 
graphs). A HARMONIC walk restricted to this sparse graph G will, by Theorem 12, 
satisfy Conjecture 13. 

4 . 2 .  S e r v e r  S y s t e m s  

The server problem is a generalization [6] of the caching problem. The problem is specified 
by a complete graph on n nodes 1 , . . . ,  n, and a metrical distance matrix (d(i, j)). There 
are M servers that  occupy M of the nodes of the graph. A request specifies a node; in 
response, a server must be moved to that  node. An algorithm chooses which server to 
move in order to satisfy successive requests in a sequence; an on-line algorithm has to 
decide on a move after each request, not knowing about future requests. 

The simple cache problem corresponds to a server problem with a unit distance ma- 
trix. The nodes of the graph are the memory items and the servers are the cache locations. 
The generalized cache problem corresponds to a server problem with a distance matrix 
of the form d(i, j)  = wj.  Such a distance matr ix is not metrical. However, one obtains 
an equivalent problem by using the distance matrix d(i, j) = (w~ + wj)/2; this matrix 
represents a generalized cache problem where the caching algorithm is charged half of 
the cost of an item when the item is loaded, and half when the item is evicted. 

Formally, an on-line algorithm for the server problem is defined by a function 

Algori thm: [1..n] M x S × [1..n] ~ [1..n] M × S 

This transition function specifies the next state and the set of nodes occupied by the M 
servers after the request has been serviced, given the current state, the current locations 
of the M servers, and the request node. The request node must be occupied after the 
transition. The memory of the algorithm is log 2 ISI. All the definitions of Section 2.1 
carry through. The definition of memory given here is different from the definition used 
in Section 2: here we allow the transition to depend on the server locations, in addition 
to the algorithm state; in Section 2 we did not allow the transition to depend on the 
cache content. With this more lenient definition, it is possible to construct a memoryless 
deterministic caching algorithm such that  c(M, M)  = M (Marek Chrobak, personal 
communication), and there is no trade-off between memory and randomness. 

In [6] it is shown that  the competitiveness coefficient of any deterministic on-line 
algorithm is at least M / ( M  - m +  1) (one compares an on-line algorithm with M servers 
to an off-line algorithm with m servers). The proof extends to randomized algorithms, 
against strong adversaries. 
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T h e o r e m  14: The  strong competitiveness coefficient of any randomized M server 
algorithm C(M, m) >_ M / ( M  - m + 1), even for a system with M + 1 nodes. 

P r o o f i  The proof uses an adversary similar to that  in [6] and is omit ted here. [] 

The  last result implies tha t  M / ( M - m +  1) is the best possible strong competitiveness 
coefficient for the cache problem and for the generalized cache problem. For the rest of 
this section, we deal with the case M = m. 

4.2.1.  R a n d o m  W a l k  A l g o r i t h m s  fo r  t h e  S e r v e r  P r o b l e m  

We now present a simple and natural  memoryless algori thm for the server problem. Let 
(p(i, j)) be a matr ix  of transition probabilities defined on the graph. Suppose we have a 
request at a node r, and we currently have no server at r. Let i l , " ' i M  be the current 
positions of our servers. We choose one of our servers at random to service the request 
at r, according to the probability distribution induced by (p(i,j)): Server ij, 1 < j < M 
is chosen with probabil i ty 

ij) 
p j =  

p(r, 

T h e o r e m  15: Let M = n - 1. Assume that  the random walk defined by the transi- 
tion probabilities p(i, j) is c-competitive. Then the strong competitiveness coefficient of 
the corresponding server algorithm C(M, M) < c. 

P r o o f :  When M = n -  1, there is exactly one node of the graph that  contains none 
of our servers. We call this node r(t) at time t. We incur a cost only when the request at 
t ime t falls at r(t). Likewise, for the adversary generating the requests, we can assume 
that  there is exactly one node not occupied by any of his servers; we denote this by a(t). 
If  r(t) = a(t), the adversary must make a move and incur a cost in order to make us 
incur any further cost. 

Assume that  initially, at t = 0, r(0) = a(0). We consider the behavior of our algorithm 
in a sequence of phases. A new phase begins when the current phase ends. A phase ends 
when r(t) = a(t) or when the adversary makes a move. We can assume that  a phase ends 
only when r(t) = a(t) (i.e., the adversary does not make a move unless he has no other 
choice). Then,  a strong adversary begins a phase by moving one of his servers at t = to. 
At this point r(to) is at distance D = d(r(to), a(to)) from a(to). The adversary incurred a 
cost of D. On every subsequent request until the end of the phase, the adversary presents 
us with a request at r(t). 

It  is easy to see tha t  r(t) executes a random walk on the graph, choosing at each step 
an edge (i, j) with probabili ty p(i, j). The walk terminates when it reaches a(to). The 
expected length of  the walk from r(t0) to a(to) is the expected cost the on-line algori thm 
incurs in this phase. Summing over all phases yields the result. D 

C o r o l l a r y  16: The strong competitiveness coefficient of the M -- n -  1 server algo- 
r i thm induced by the HARMONIC random walk is C(M, M) <_ M ( M  + 1). 
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Manasse et al. [6] give an algorithm for the ( n -  1)-server problem that is ( n -  
1)-competitive, and thus superior in its amortized performance. However, it requires 
substantiM computationM resources (time and space), whereas our algorithm is simple 
and natural. Furthermore, when Conjecture 13 holds for the random walk derived from 
(p(i,  j)), the competitiveness of the resulting memoryless randomized algorithm is within 
a multiplicative constant of that of the algorithm of Manasse el al. 

The proof of the last theorem suggests an approach to analyzing the algorithm for 
any value of M (regardless of its relation to n). For the remainder of this section, we 
study the server problem in a slightly more general setting: the requests are points in an 
arbitrary metric space (rather than the nodes of a finite graph with a distance matrix). 
We begin with M points in the space, each of which is occupied by one adversary server 
and one of our servers. Thus the adversary first makes a move in order to be able to give 
us a request for which we incur a cost. 

C o n j e c t u r e  17: (Lazy Adversary Conjecture): The following (strong) adversary 
strategy results in the poorest performance for memoryless algorithms: 

Whenever there is a point in the space at which the adversary has a server but 
we have none, the adversary presents the next request at that point (instead 
of making a move and incurring a cost). 

The conjecture suggests that the ratio of our expected cost to that of the adversary is 
maximized under this adversary policy. (The conjecture is not true for every algorithm; 
we only suggest it is true for a class of algorithms that includes memoryless algorithms). 
If this conjecture were proved, we can reduce the analysis of the algorithm to a phase 
analysis and random walk similar to that in Theorem 15 (details omitted here). The 
result would be an upper bound of c on the strong competitiveness coefficient of our 
algorithm, where c is the expansion factor for a random walk on a graph with M + 1 
nodes; c = M ( M  q- 1) for the HARMONIC random walk. This would be significant 
because for M > 2, there is no known algorithm that is c-competitive where c is bounded 
by any function of M alone, even on finite graphs (other than M = n - 1). 

Even without the Lazy Adversary Conjecture, we can bound the performance of the 
HARMONIC algorithm in an arbitrary metric space for the case M = 2. 

T h e o r e m  18: The strong competitiveness coefficient of the HARMONIC algorithm 
for the 2-server problem is in the interval [3, 6]. 

The proof is omitted in this version. Manasse el al. [6] give a 2-competitive, deterministic 
algorithm for this problem. Their algorithm has a better competitiveness coefficient; ours 
is randomized but simpler, memoryless and computationally efficient. 

4.3. Metr ical  Task S y s t e m s  

A metrical task system consists of a a graph G with n nodes {1 , . . . ,  n} and a metrical 
cost matrix (d(/, j)). An algorithm resides at one node of G at any given time. A task T 
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is a vector of length n whose ith component is the cost of processing T while at node i; 
we assume that  these costs are uniformly bounded. Given a task sequence Tt, T2-. .  Tk, 
an algorithm must choose a schedule il ,  i2 •. • ik of nodes, where ij is the node occupied 
by the algorithm at step j ,  while processing Tj. An on-line algorithm must choose ij 
knowing only T1 . . . ~ .  The cost of a schedule is the sum of all task processing costs 
and all transition costs incurred. We refer the reader to Borodin et al.[1] for details; 
metricM task systems can be viewed as a generalization of server systems. (A node in 
the metrical task system encodes the locations of the M servers of the server problem; 
an M-se rve r  problem on a graph with n nodes is represented by a metrical task system 
with ( ~ ) n o d e s . )  

An algorithm is now defined by a function: 

Algorithm : [1..n] x S x Task --~ [1..n] x S. 

As in the previous sections we can define memory, and the competitiveness of determin- 
istic and randomized algorithms. 

Borodin et al. give a general deterministic algorithm for metrical task systems, which 
can be generMized as follows. Let A be a traversaI algorithm for the graph of the task 
system. A metrical task system algorithm A is derived from A, as follows: Let i be 
the current location of the algorithm, and let j be the next node visited by the traversal 
algorithm. Then A moves to j when the processing cost since entering i reaches the move 
cost d ( i , j ) .  (This introduces a technicality: the total cost since entering i could jump 
substantially above d(i, j )  in the course of processing a single task, thus necessitating 
several state changes before processing the next task. The solution given by Borodin et 
al. is to view the process as occurring in continuous time - details may be found in their 
paper and are omitted here). The cost incurred by algorithm _A is thus twice the cost of 
its moves. Using an argument similar to that  used in the proof of Theorem 9, one can 
obtain the following result. 

T h e o r e m  19: Assume that  the traversal algorithm A is c-competitive. Then the 
derived metrical task system algorithm A is 2c-competitive. 

Using a deterministic traversal algorithm with competitiveness coefficient 4(n - 1) 
(Theorem 10), Borodin et al. obtain a deterministic on-line algorithm for any metrical 
task system which is 8(n - 1)-competitive. 

Using the HARMONIC random walk traversal, we obtain a probabilistic on-line al- 
gorithm which is 2n(n  - 1) competitive. When conjecture 13 holds true, we obtain an 
algorithm wich is O(n)-competitive. Such random walk algorithms are not memoryless, 
as one has to maintain a counter that  accumulates the total processing cost at the current 
node. However, one can replace this counter by a probabilistic counter. 

Assume that  the algorithm is at node i, and let d be the cost of the next move; if the 
algorithm is probabilistic,we take d to be the expected cost of the next move (i.e., for a 
random walk algorithm, d = ~ j # i p ( i , j ) d ( i , j ) ) .  Given a task T, let T( i )  be the cost of 
processing T at node i. Assume T( i )  < d (to justify this, we use the same continuous- 
time ideas of Borodin et al. without further elaboration in this version). Independent of 
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previous tasks and processing costs, our algorithm Gambler does the following: given T, 
flip a coin with Pr[geads] = T(i)/d; if it comes up Heads, Gambler moves to the next 
node in the traversal (this next node may be chosen probabilistically), else it remains at 
the current node. Note that Gambler is memoryless. Lemma 8 can now be invoked to 
show that the expected processing cost incurred by Gambler algorithm at node i is d. 
This yields the following theorem, whose proof we omit here. 

T h e o r e m  20: Let c be the competitiveness coefficient of a traversal algorithm A. 
The competitiveness coefficient of Gambler using the traversal A is _~ 2c. 

Using this construction, together with the HARMONIC random walk, we get a mem- 
oryless on-line algorithm for metrical task systems which is 2n(n - 1)-competitive. When 
conjecture 13 is correct, we get an O(n)-competitive memoryless algorithm. 
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