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ABSTRACT
As the number of cores per node keeps increasing, it be-
comes increasingly important for MPI to leverage shared
memory for intranode communication. This paper investi-
gates the design and optimizations of MPI collectives for
clusters of NUMA nodes. We develop performance mod-
els for collective communication using shared memory, and
we develop several algorithms for various collectives. Ex-
periments are conducted on both Xeon X5650 and Opteron
6100 InfiniBand clusters. The measurements agree with the
model and indicate that different algorithms dominate for
short vectors and long vectors. We compare our shared-
memory allreduce with several traditional MPI implementa-
tions – Open MPI, MPICH2, and MVAPICH2 – that utilize
system shared memory to facilitate interprocess communi-
cation. On a 16-node Xeon cluster and 8-node Opteron clus-
ter, our implementation achieves on average 2.5X and 2.3X
speedup over MVAPICH2, respectively. Our techniques en-
able an efficient implementation of collective operations on
future multi- and manycore systems.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming
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1. INTRODUCTION
Applications using the Message Passing Interface (MPI) [14]

often run multiple MPI processes at each node. When evolv-
ing from petascale to exascale, the number of cores per node
keeps growing while the available memory amount grows
much slower, leading to a hundred-fold reduction in mem-
ory per core (relative to petascale systems) with an accom-
panying reduction in memory bandwidth per core. Data
movement will be more costly than ever in terms of either
performance or power efficiency. As nodes exhibit increas-
ingly nonuniform memory, the performance of MPI collec-
tives becomes more and more dependent on the performance
of the intranode communication component of such collec-
tives. Currently, implementations of MPI collectives take
advantage of shared memory in two ways. In the first way,
collectives are built by using point-to-point message pass-
ing, which uses shared memory as a transport layer inside a
node. Collectives in MPICH2 [28] are implemented in this
way. In the second way, Collectives are implemented di-
rectly atop shared memory [6, 11, 23]: Data is copied from
user space to shared system space so that all the processes
in the communicator can share and collectively work on the
data. Collectives in Open MPI [6] and some collectives in
MVAPICH2 [11] are implemented in this way. The second
approach reduces the number of memory transfers [6, 23],
but still requires extra data movement. Also, shared mem-
ory is usually a limited system resource.
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Figure 1: Runtime model of traditional MPI vs. Hy-
brid MPI (HMPI)

The hybrid MPI library (HMPI) [5] avoids these overheads
by replacing the common process-based rank design with a
thread-based rank; all MPI ranks (threads) on a node are
running within the same process, as illustrated in Figure 1.



Node0 Node1 Node0 Node1

MPI_COMM_WORLD HMPI_COMM_WORLD

Stack

Global

variables

MPI

rank1

Code

Heap

Stack

Global

variables

MPI

rank0

Code

Heap

Stack

Global

variables

MPI

rank3

Code

Heap

Stack

Global

variables

MPI

rank2

Code

Heap

Stack

MPI

rank1

Stack

Global

variables

MPI

rank0

Code

Heap

Stack

MPI

rank3

Stack

Global

variables

MPI

rank2

Code

Heap

Figure 2: Memory layout of traditional MPI vs. Hy-
brid MPI (HMPI)
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Figure 3: Latency of HMPI Allreduce vs. tradi-
tional MPI Allreduce on 16 Xeon X5650 nodes

HMPI takes advantage of shared memory within a node and
utilizes the existing MPI infrastructure for internode com-
munication. A similar technique can be applied to exist-
ing MPI implementations by using techniques such as cross-
memory attach (XPMEM [24]) to create a globally shared
heap for all MPI processes on a node. The detailed tech-
niques for sharing the heap are well understood [20] and
thus not a topic of this paper.

Multithreading provides each MPI rank private stack space,
and shared heap space and global variables. A comparison
betweet HMPI and traditional MPI memory layouts is pre-
sented in Figure 2. Sharing heap data directly can yield
significant performance gains for the following reasons: (1)
communication between MPI ranks within a node requires
only one copy, the minimum possible, and (2) synchroniza-
tion can be accelerated by using shared flags. Applications
that run in the process-based model will work with few mod-
ifications in the thread-based model: Static variables need
to become thread-private. Automatic privatization of global
variables [15, 17] can minimize the developer effort. Shared-
heap techniques such as XPMEM change the memory alloca-
tor to allocate from shared memory, and no further changes
are needed.

We demonstrate in this paper the performance advantage
of HMPI’s thread-based approach, in the context of MPI
collectives, in particular, MPI Allreduce. Figure 3 shows
the motivation for our work, namely, that HMPI Allreduce
is significantly faster than traditional MPI Allreduce. The
remainder of this paper discusses a set of algorithmic mo-
tifs, such as mixing different tree structures and multidimen-

sional dissemination algorithms; and a set of optimization,
such as utilizing shared caches and locality. These enable us
to achieve highest performance for collective operations on
NUMA machines.

We study three thread-based algorithms for MPI allreduce
in detail: reduce-broadcast, dissemination, and tiled-reduce-
broadcast. We establish detailed performance models for all
algorithms to enable model-based algorithm selection. Ex-
periments are conducted on a 12-core Xeon X5650 cluster
and a 32-core Opteron 6100 cluster. On 16 nodes of the Xeon
cluster and 8 nodes of the Opteron cluster, HMPI Allreduce
gets on average 2.5X and 2.3X speedup over MVAPICH2 1.6,
and gets on average 6.3X and 4.7X speedup over MPICH2
1.4.

The key contributions of this paper are as follows:

1. We design NUMA-aware algorithms for thread-based
HMPI Allreduce on clusters of NUMA nodes.

2. We show a set of motifs and techniques to optimize
collective operations on multicore architectures.

3. We establish performance models based on memory
access latency and bandwidth to select the best algo-
rithm for different vector sizes.

4. We perform a detailed benchmarking study to assess
the benefits of using our algorithms over state-of-the-
art approaches.

In the next section, we discuss the models to estimate the
cost of intranode data movement, and introduce the imple-
mentations and performance models of our NUMA-aware
allreduce algorithms, including reduce-broadcast, dissemi-
nation, and parallel-reduce followed by a broadcast. Ex-
perimental results and analyses are presented in Section 3.
Section 3.4 discusses parameter estimation for our model
and algorithm selection. A comparison with OpenMP re-
duction is presented in Section 3.5. Section 3.6 and Section
3.7 present the performance of our thread-based MPI col-
lectives using microbenchmarks and applications on CMP
clusters. Section 4 discusses related work, and Section 5
summarizes and concludes.

2. ALLREDUCE ALGORITHMS IN
SHARED MEMORY

Several factors, such as thread affinity, memory con-
tention, and cache coherency, must be considered when de-
signing multithreading algorithms. We assume that threads
are bound to cores and use the following techniques to ad-
dress these factors:

1. All the algorithms discussed in the following subsec-
tions are NUMA-aware to reduce intersocket memory
traffic.

2. To reduce capacity cache misses for large-vector re-
ductions, we use strip mining for large vectors in all
algorithms. With this technique, large vectors are di-
vided into chunks so that each chunk can fit into the
last-level cache.

3. A high-performance, tree-based barrier is used to syn-
chronize all threads in a communicator. Flag variables
used in the synchronization operations are padded to
prevent false sharing.
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2.1 Performance Model
We use performance models to guide the selection of the

best collective algorithms. Since internode communication is
not affected by our design, we focus on a performance model
for intranode communication. The key operation is a read or
write of contiguous data. We assume that the time overhead
of consecutive memory access by a thread is approximated as
a+bm, where m is the vector length (number of cache lines),
a + b is the latency for the first cache line access and 1/b
denotes the bandwidth (relative to cache lines). The average
latency for each cache line is less than the latency for the
first cache line, because consecutive memory accesses benefit
from hardware or software prefetching [9, 1]. The values
of a and b depend on whether the data is on the local or
the remote socket, the level of memory hierarchy, the cache
line state (e.g., modified cache lines need to be written back
before they are evicted), and whether one reads or writes
the data (e.g., a write miss may cause a load triggered by
write-allocate).

The layout of threads is critical when designing the algo-
rithms. For instance, a random mapping of threads in a node
may lead to more intersocket communication, which can be
several times slower than intrasocket communication [13]. In
order to minimize communication overhead, all the following
algorithms are designed and implemented hierarchically ac-
cording to the hierarchy detected by the HWLOC library [4],
namely intramodule (for cores sharing L2 cache), intrasocket
(for cores sharing L3 cache), intersocket, and internode. To
simplify the problem, when introducing the algorithms im-
plementation, we assume that each core has a private L2
cache and each socket contains a shared L3 cache, such as
for the Xeon X5650 and Opteron 6100. The intrasocket
memory access time is expressed as aα+bαm, and the inter-
socket memory access time is expressed as aβ + bβm, where
aα + bα < aβ + bβ and 1/bα > 1/bβ . These formulas ignore
congestion [13]. To model congestion, we use the formula
a + Bdm to represent the delay for d simultaneous accesses
where 1/B is the total bandwidth of the shared link and
(1/(Bd)≤ 1/b). We use 1/Bα to represent intrasocked total
bandwidth and 1/Bβ to represent intersocket total band-
width.

We use s for the number of sockets and q for the number of
threads running in each socket, for a total of p = qs threads
per node.

2.2 Reduce-Broadcast
Our reduce-broadcast algorithm uses a tree reduction, fol-

lowed by a tree broadcast. For the reduction phase, we use
a regular n-ary tree. Each thread performs a reduction af-

ter it has synchronized with n − 1 children and finished its
previous step. If it is the first child of its parent, then it acts
as parent in the next round. Otherwise it synchronizes with
the parent.

A binary reduction tree is illustrated in Figure 4; ver-
tical lines connect computations within the same thread
and arrows show communication across threads. The n-
ary tree is mapped onto the node topology so that in-
tersocket communication is used only at the top levels.
If h is the height of the intrasocket reduction tree, then
q ≤ (nh+1−1)/(n−1), and h = dlogn((n−1)q+1)e−1. To
simplify this formula, we assume q is much larger than 1, so
that h = dlogn((n−1)q+1)e−1 = dlogn(n−1)+logn qe−1 ≈
d1 + logn qe − 1 = dlogn qe. Similarly, the height of inter-
socket n-ary tree can be expressed as dlogn se. Assuming no
congestion, the time for the intrasocket n-ary reduction tree
is (n−1)(aα+bαm)dlogn qe. However, intrasocket reduction
may cause congestion in the lower level of the tree, since
simultaneous memory accesses share the last-level cache.
However, the number of simultaneous accesses decreases as
the tree goes to higher levels. To be more accurate, we use

Tintra−red = (n− 1)
∑dlogn qe
i=0 max(aα + bαm,

aα + Bαn
im) (1)

to model the time for the intrasocket n-ary reduction tree.
For intersocket reduction, no memory accesses share the
same link (in modern NUMA processors, sockets are linked
with each other by point-to-point links, e.g., Intel QPI and
AMD HT). The time for the intersocket n-ary reduction tree
is

Tinter−red = (n− 1)(aβ + bβm)dlogn se (2)

The total time for reduction is

Tred = Tintra−red + Tinter−red (3)

This function is monotonically increasing in n, so that
the best algorithm is always obtained for n = 2. This is
validated by the experiments described in Section 3.2.

When broadcast is done by using shared memory with an
n-ary tree, one thread writes the vector, and n threads read
the vector simultaneously. Communication will go through
the cache, and data is not written back to memory. Caches
have a high bandwidth and hence can support a large fan-
out. Experiments described in Section 3.2 show that, for the
systems under consideration, only two configurations need
to be considered: (1) a one-stage broadcast, where all the
threads read the vector simultaneously, and (2) a two-stage
broadcast, where a “socket master” at each socket reads the
vector in the first step, and then all threads within a socket,
except the socket master, read the local copy simultaneously,
as illustrated in Figure 5. The first approach always gets the
best performance on a dual-socket Westmere CMP, and the
second approach performs better for the 4-socket Magny-
Cours CMP.

In a two-stage broadcast, the time for the intersocket
broadcast (no shared intersocket link in this stage) is
(aβ + bβm), and the time for the intrasocket broadcast
is (aα + Bα(q − 1)m), so that the total time overhead is
aα + Bα(q − 1)m + aβ + bβm. In a one-stage broadcast the
time is dominated by the intersocket memory accesses and
each intersocket link is shared by q memory accesses. Simul-
taneous remote accesses to the same data benefit from syn-
ergistic prefetching [26]: After one thread reads one chunk
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Figure 5: Two-stage broadcast, for 1 node with 4
sockets; each socket includes 4 cores.

of data from the remote socket, other threads can read this
chunk of data directly from the socket-local shared cache.
However, we found that, in practice, it does suffer from con-
gestion to some extent, so that we approximate the time
cost of one-stage broadcast as aβ + Bβqm. In general, the
broadcast takes time

Tbcst = min(aα + Bα(q − 1)m + aβ + bβm,aβ + Bβqm) (4)

Considering both reduction and broadcast phases for tree-
based allreduce, the total time taken by an n-ary reduction
tree combined with a one- or two-stage broadcast is

Tred−bcst = Tred + Tbcst (5)

2.3 Dissemination
The dissemination algorithm [7, 8] achieves complete dis-

semination of information among p threads in dlog2 pe syn-
chronized steps. If the number of threads p is a power of
2, it needs N = dlog2 pe steps to accomplish an allreduce.
During step i (i = 0, 1, ..., N−1), thread j (j = 0, 1, ..., p−1)
combines the data from thread (j − 2i + p) mod p with its
own data. This algorithm has fewer steps but more total
communication than does the reduce-broadcast algorithm.

The dissemination algorithm can be laid out so that in-
tersocket communication happens only in the last dlog2 se
steps, as presented in Figure 6. In the last dlog2 se steps, all
threads within a socket need the same chunk of data from
the other sockets. While this approach benefits from syner-
gistic prefetching [26], it does suffer from congestion to some
extent in practice.
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Figure 6: Dissemination, for 1 node with 2 sockets;
each socket includes 4 cores.

In each step of dissemination all the threads communicate
simultaneously, so we use the total bandwidth 1/B to ap-
proximate the time overhead. Although p memory accesses
share the intersocket link (in the case of 2 sockets), inter-
socket links always have equal bidirectional bandwidth in
modern NUMA processors, so that we can always use q as

the number of memory accesses sharing the link. If p is a
power of 2, the total time taken by dissemination is

Tdis−pwr2 = (aα + Bαqm)dlog2 qe+ (aβ + Bβqm)dlog2 se (6)

If the number of threads p is not a power of 2, the final
results may not be correct using the above algorithm. To
solve this problem, we put the excess threads in a different
set that is handled separately, so that the number of the
remaining threads is the largest possible power of 2. A reg-
ular dissemination algorithm can be used for the remaining
threads; the excess threads then copy the final result from
a thread in the same socket. A dissemination algorithm for
p = 12 is given in Figure 7.
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Figure 7: Dissemination, for 1 node with 2 sockets;
each socket includes 6 cores.

Let u = blog2qc, q
′

= 2u and r = q − q
′
. If p is not a

power of 2, then the total time taken by dissemination is

Tdis−non−pwr2 = (aα + Bαq
′
m)dlog2 q

′
e+

(aβ + Bβq
′
m)dlog2 se+ 2(aα + Bαrm) (7)

2.4 Tiled Reduce-Broadcast
Since all threads can access all the vectors, a straight-

forward algorithm is for each thread to compute sequen-
tially one tile of the final result and then broadcast it to all
threads. This algorithm works for long vectors and can be
expected to have better performance than other algorithms
for large vector sizes, because it can keep all the threads
busy and make better use of bandwidth.

We use the tiled approach only within sockets; the lim-
ited intersocket bandwidth means that a tree reductions per-
forms better at that stage. Each send buffer of a thread is
partitioned into q chunks as evenly as possible, and then
each thread simultaneously reduces its corresponding por-
tion into a temporary buffer. In order to prevent false shar-
ing, the temporary buffer is padded with dummy data to
the cache line boundary and partitioned at cache line gran-
ularity. In Figure 8, Thread0 in Socket1 reduces all the B0

blocks onto a temporary buffer. Next, we reduce in paral-
lel these q chunks across sockets, using a tree reduction, in
dlog2 se steps.

Simultaneous memory accesses happen within each socket,
so that we use the total bandwidth 1/B to approximate the
reduce time. The time spent in the intrasocket reduction is:

Ttiled−intra−red = (aα + Bαq(m/q))q = aαq + Bαqm (8)
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The time spent in intersocket reduction is

Ttiled−inter−red = (aβ + Bβ(m/q)q)dlog2 se
= (aβ + Bβm)dlog2 se (9)

The total reduction time is

Ttiled−red = aαq + Bαmq + (aβ + Bβm)dlog2 se (10)

For the broadcast phase, we use one- or two-stage broad-
cast, as presented in Section 2.2. The total time for tiled-
reduce-broadcast is

Ttiled−red−bcst = aαq + Bαmq + (aβ + Bβm)dlog2 se
+min(aα + Bα(q − 1)m + aβ + bβm,aβ + Bβqm) (11)

2.5 Internode Communication
Allreduce can be executed on multiple network nodes

by performing a reduce computation within each node, an
allreduce across nodes, and a broadcast within each node.
The intranode communication is the same as for a reduce-
broadcast or a tiled-reduce-broadcast. Therefore, to first
approximation, an optimized allreduce is obtained by com-
posing the best intranode allreduce with the best internode
allreduce. Internode collectives have been extensively stud-
ied [22, 18, 21], so we focus on the intranode part.

Different from reduce-broadcast and tiled-reduce-
broadcast, internode dissemination is used after intranode
dissemination for the dissemination algorithm across nodes.
The internode dissemination is similar to the shared-
memory algorithm described in Section 2.3. Assume there
are P nodes (P is power of 2). It needs N = dlog2 P e
steps to accomplish internode dissemination. In each step,
to reduce communication overhead, only one thread in a
node communicates with another node using point-to-point
communication. After receiving the data, each thread
within the node combines the received data with its own
data simultaneously. Again, dissemination may has fewer
steps but may have more communication than the other two
algorithms. Experiments described in Section 3.6 compare
the performance of these three algorithms on distributed
memory.

2.6 Other Collective Operations

Our allreduce algorithms can be extended to other col-
lective operations in NUMA shared memory systems. A
reduce can be implemented as the reduction phase in allre-
duce. Different from allreduce, one needs to allocate an
extra temporary buffer for each parent thread to store the
intermediate results, since only the root thread has an out-
put buffer. Broadcast can be implemented as the broadcast
phase of allreduce.

An intranode barrier is implemented as a reduce-
broadcast allreduce with zero workload. In the reduction
phase, each thread sets a flag variable to indicate its arrival
by an n-ary reduction tree. The root thread then informs
other threads to continue by a one- or two-stage broadcast
tree. For the internode barrier, an existing MPI Barrier is
called by the root thread between the reduction and broad-
cast phases.

For scatter, a temporary buffer is allocated within each
node. The “global” Scatter is called by the “node master”
to scatter the send buffer evenly among all the nodes, and
the temporary buffer on each node is used as the receive
buffer. The temporary buffer on each node then is evenly
scattered among all the threads within a node. Similar to the
broadcast phase of allreduce, the intranode scatter phase can
be implemented as one- or two-stage scatter. MPIreduce-
scatter is implemented by a reduce phase (tree-based algo-
rithm or tiled reduce) followed by a scatter phase (one- or
two-stage scatter).

3. EVALUATION
Experiments were conducted on both Intel Xeon X5650

(Westmere) and AMD Opteron 6100 (Magny-Cours) clus-
ters. One Xeon X5650 node has two 2.67 GHz Westmere
processor sockets. Each socket has 6 cores and a 12 MB in-
clusive shared L3 cache. The architecture of the Xeon X5650
is illustrated in Figure 9. One Opteron 6100 node has 2.4
GHz Magny-Cours sockets with 8 cores in each of the sock-
ets. Each socket has a shared 10 MB noninclusive L3 cache;
2 MB out of the 10 MB of L3 cache are used to record the
data in L1 and L2 caches. The architecture of the Opteron
6100 is illustrated in Figure 10.

L1

Core 0

L2

L1

Core 5

L2

12 MB Shared Level 3 

Cache

IMC (3 Channel) QPI

D
D

R
3

 

A

D
D

R
3

 

B

D
D

R
3

 

C

Westmere Hex-core

�� L1

Core 6

L2

L1

Core 11

L2

12 MB Shared Level 3 

Cache

IMC (3 Channel)QPI

D
D

R
3

 

A

D
D

R
3

 

B

D
D

R
3

 

C

Westmere Hex-core

��

I/O Hub

Figure 9: Westmere, 2 sockets, total 12 cores

In a Xeon X5650 node, intersocket data transfer goes
through the Quick Path Interconnect (QPI), while in an
Opteron 6100 node, intersocket data transfer goes through
HyperTransport (HT 3) point-to-point links. Both the Xeon
X5650 nodes and Opteron 6100 nodes are connected with
Voltaire QDR InfiniBand in the cluster. The operating sys-
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tem on the Xeon X5650 cluster is Scientific Linux 6.1; the
operating system on Opteron 6100 cluster is CentOS 5.5.

We compare the performance of HMPI’s Allreduce with
several currently popular MPI implementations, including
MPICH2 1.4.1.pl, MVAPICH2 1.6, and Open MPI 1.6 in
both shared-memory and distributed-memory environments.
All the experiments are run 256 times, and we present the
average values in the following figures.

We define the speedup S as S =
Tref

T
. This means that an

optimized operation that runs in 50% of the latency (time)
of the reference operation is said to have a speedup of 2 (also
denoted as 2X).

3.1 Reduce-Broadcast
In this section, we compare the performance of different

broadcast and reduction tree structures, in order to select
the reduce-broadcast algorithm. Figures 11 and 12 present
the performance comparison of different broadcast trees on
Westmere and Magny-Cours CMPs respectively. On the 12-
core Westmere, a one-stage broadcast where 11 threads read
data from the root thread simultaneously always gets the
best performance for all vector sizes. The reason is that
the inclusive L3 cache of Westmere exhibits affordable con-
tention when all the threads accessing it simultaneously.

1
.0

 
1
.2

 
1

.4
 

1
.6

 

8 64 1K 16K 768K 16M 256M

S
p

e
e
d
u

p
 n

o
rm

a
liz

e
d
 t

o
 2

-a
ry

Vectorsize [Bytes]

2-ary

4-ary

6-ary

8-ary

1-stage

2-stage

Figure 11: Performance comparison of different n-
ary broadcast trees and 1-stage/2-stage broadcast
trees on 12-core Westmere
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Figure 12: Performance comparison of different n-
ary broadcast trees and 1-stage/2-stage broadcast
trees on 32-core Magny-Cours

Different from Westmere, on the 32-core Magny-Cours, a
two-stage broadcast always gets the best performance for
all vector sizes. The reason is probably that Magny-Cours
has more sockets and cores than does Westmere, so that the
benefit of finishing broadcast in one step cannot compensate
for the high contention overhead.

In both Figures 11 and 12, flatter broadcast trees become
much more advantageous when the vector size is larger than
768 KB. The reason is that the total data set size is larger
than the L3 cache and threads need to load the data from
main memory (DRAM). The bandwidth to main memory is
much lower than the L3 cache, so that reducing the number
of passes becomes more important.
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Figure 13: Performance comparison of different n-
ary reduction trees on 12-core Westmere

Figure 13 and Figure 14 presents the performance com-
parison of different n-ary reduction trees on Westmere and
Magny-Cours respectively. As expected, a binary reduction
tree dominates all other n-ary reduction trees. In summary,
the best reduce-broadcast algorithm is a binary reduction
tree followed by a one-stage or two-stage broadcast tree,
which is abbreviated as “tree” algorithm in the remainder of
the paper.

3.2 Performance of Tiled-Reduce
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Figure 14: Performance comparison of different n-
ary reduction trees on 32-core Magny-Cours

We evaluate the performance of the hierarchical tiled-
reduce algorithm presented in Section 2.4 with other simi-
lar implementations, namely, a naive tiled-reduce and cyclic
tiled-reduce [11]. Tiled-reduce does the reduction in paral-
lel but without consideration of the NUMA hierarchy. This
leads to high contention for intersocket memory accesses.
Mamidalaet al. [11] proposed a cyclic tiled-reduce algorithm
where the order of send buffer (input buffer) accesses are
interleaved leading to lower contention than tiled-reduce.
Figure 15 show the results on Magny-Cours. Cyclic tiled-
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Figure 15: Tiled-reduce on 32-core Magny-Cours

reduce performs slightly better than the original tiled-reduce
algorithm. The hierarchical algorithm that uses tiled-reduce
inside sockets and tree reduction across sockets has signif-
icantly better performance. Similar results have been ob-
tained from Westmere.

3.3 HMPI’s Allreduce vs. Traditional MPIs
First we compare the best HMPI Allreduce algorithms,

including tree, dissemination, and tiled-reduce followed by
a broadcast, with the current MPI implementations, includ-
ing MPICH2, Open MPI 1.6, and MVAPICH2, on shared
memory. The number of launched threads in HMPI Allre-
duce and the number of launched processes in the traditional

Allreduce are equal to the number of cores on each architec-
ture. Figure 16 shows the result on Westmere.
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Figure 16: Performance comparison between
HMPI’s Allreduce algorithms and several MPI im-
plementations on a 12-core Westmere CMP

HMPI’s Allreduce always outperforms traditional ap-
proaches used in other MPI implementations on Westmere.
This performance is due partially to direct memory access
and low overhead of synchronization and partially to the
aggressive NUMA optimizations in HMPI. Among all the
HMPI Allreduce algorithms, dissemination almost always
exhibits the worst performance on both architectures (only
better than tiled-reduce-broadcast for small vectors). This
probably results from the redundant computation and con-
tention caused by combining reduction and broadcast to-
gether, and the extra overhead for nonpower-of-2 thread
counts, as reflected in Equation (7).

Among all the MPI implementations, MPICH2 always
gets the worst performance. Recall that in MPICH2, collec-
tives are built on the point-to-point message passing using
shared memory merely as a transport layer; in Open MPI
1.6 and MVAPICH2, collectives are implemented and opti-
mized independently by eliminating point-to-point message
passing as the underlying communication protocol. Imple-
menting collectives on top of point-to-point message pass-
ing has the most buffer copies. Our best implementation
achieves on average 3.6X lower latency than Open MPI 1.6,
4.3X lower latency than MVAPICH2, and 8.8X lower latency
than MPICH2.

Overall, on Westmere, the tree-based algorithm gets the
best performance when the vector size is less than 16 KB,
while tiled-reduce followed by a broadcast gets the best per-
formance when vector size grows larger than 16 KB. When
comparing Equation (5) with Equation (11), the latency of
tiled-reduce followed by a broadcast is higher than tree but
the bandwidth term is more favorable. When the vectors are
small, latency is the limiting factor in the time overhead, so
that tree performs better than parallel-reduce followed by
a broadcast. When the vector size grows larger and band-
width becomes the bottleneck, tiled-reduce followed by a
broadcast performs better than tree.

Figure 17 shows the result on Magny-Cours. The same as
that on Westmere, tree-based algorithm dominates the per-
formance for small vector size while tiled-reduce-broadcast
dominates the performance for large vector size, but the



crosspoint is different. In summary, the best algorithm is
different from different machines as well as different vector
size, and this is the motive of designing performance model
for algorithm selection.
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Figure 17: Performance comparison between
HMPI’s Allreduce algorithms and several MPI im-
plementations on a 32-core Magny-Cours CMP

3.4 Algorithm Selection
In this section we use memory access latency and band-

width to verify the performance models and then select the
best Allreduce algorithms for different vector sizes. Sev-
eral factors, such as cache coherence protocol, hardware and
software prefetch, and page size (TLB), affect the cache line
transfer latency and bandwidth. The configurations of these
parameters for both Westmere and Magny-Cours are pre-
sented below. Page size is set to 4 KB, hardware prefetch
and adjacent line prefetcher are turned on, and no software
prefetch is used in the original code or in the compiler op-
tions. The various cache line states also affect performance.
In order to build the performance model accurately, all the
data in send buffer and receive buffer are set to the Modified
state, which models the common scenario of a local write
followed by a global communication of the written buffer.

As mentioned, the tree-based algorithm gets the best per-
formance for small vector sizes. The time overhead of a
tree-based algorithm is shown in Equation (5), where n = 2.
We set the vector size to one cache line (m = 1) and use ex-
perimentally measured cache line transfer latency to verify
the model. To determine the latencies, we use BenchIT [13],
which provides memory latency benchmarks for multicore
and multiprocessor x86-based systems.

Figure 18 shows the results on Xeon X5650. The three
curves show the latency of local access, intrasocket access
(Core 0 accessing Core 1), and intersocket access (Core 0
accessing Core 6) respectively. By varying the data set size,
the performance of the full memory hierarchy is exposed.
The latency of reading local L1 cache (Rl) is 1.2 ns, the
latency of reading other L1 cache but in the same socket
(Rs) is 28.5 ns, and the latency of reading L1 cache on the
other socket (Rr) is 105.2 ns.

On the 12-core Westmere, Equation (5) is unfolded as
Tred−bcst = (aα + 2Bαm) + 2(aα + bαm) + (aβ + bβm) +
(aβ + Bβqm), where m = 1, q = 6. Figure 19 shows the
steps in the tree-based algorithm on Westmere.

Rs=

28.5ns

Rl=1.2ns

Rr=

105.2ns

= 3(Rs+2Rl)+(Rr+2Rl)+Rr+Rl
tree
T

L1 cache L2 cache L3 cache DRAM

Figure 18: Modified cache line read latency on West-
mere. Rl denotes latency of read local L1 cache, Rs
denotes latency of read other L1 cache but within
the same socket, and Rr denotes latency of read
other L1 cache from remote socket.

Step4

Step0

Step1

Step2

Step3

reduction tree

broadcast tree

Figure 19: Steps in the tree-based algorithm on
Westmere

(1) In Step0, Step1, and Step2, a thread reads a cache
line from its local L1 cache and a cache line from a remote
L1 cache but within the same socket and then writes to its
local L1 cache. Because writing to the local L1 cache is a
write hit, we assume its latency is equal to the read latency.
In Step0, there are 3 simultaneous memory accesses within
each socket; however, because the data size is very small
and the shared L3 cache serves as central unit for intercore
communication, the congestion is ignored. Thus, the time
overhead of the first three steps is 3(Rs+2Rl), corresponding
to (aα + 2Bαm) + 2(aα + bαm) in the model.

(2) In Step3, a thread performs the same operations as
in the first three steps except that there is an intersocket
cache line read. The time overhead of Step3 is Rr + 2Rl,
corresponding to (aβ + bβm) in the model.

(3) In Step4, all other threads read data from the root
thread and write to their own receive buffer. Because of the
same reason mentioned in Step0, the congestion is ignored.
Hence, Step4 can be simplified to one thread reading a cache
line from remote socket and writes to local L1 cache. The
write is a write hit and we assume it equals to the read
latency. So the time overhead in Step4 is Rr + Rl, corre-
sponding to (aβ + Bβqm) in the model.

To sum up, the overall time overhead of tree-based algo-
rithm on Xeon X5650 is 3(Rs+2Rl)+(Rr+2Rl)+(Rr+Rl)=
306.7 ns. We use an indirect method to measure the practi-
cal runtime, namely, the runtime of one cache line workload



Rl=1.3ns

Rs=69.2ns

Rr=114.6ns

Rd=155.2ns

= 3(Rs+2Rl)+2(Rr+2Rl)+(Rd+Rl)+(Rs+Rl)
tree
T

L1 Cache L2 Cache L3 Cache DRAM

Figure 20: Modified cache line read latency on
Magny-Cours. Rr denotes the L1 read latency from
a horizontal or vertical remote socket, and Rd de-
notes the L1 read latency from a diagonal remote
socket.
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Figure 21: Performance model for tree-based algo-
rithm on Westmere
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Figure 22: Performance model for tiled-reduce-
broadcast on Westmere

minus the runtime of zero workload. The practical runtime
is 339.8 ns, which is a little higher than that the model
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Figure 23: Selecting the best algorithm with the
performance model on Westmere
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Figure 24: Selecting the best algorithm with the
performance model on Magny-Cours
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Figure 25: Performance comparison between the
best HMPI Reduce algorithm and OpenMP reduc-
tion on Westmere

predicted. The deviation is due to complex interactions in
the microarchitecture (e.g., pipelining and superscalar units)
that have only low-order influence on the runtime and that
we thus excluded from the model.
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Figure 26: Performance comparison between the
best HMPI Reduce algorithm and OpenMP reduc-
tion on Magny-Cours

Similar results have been obtained on Magny-Cours.We
note that on the four-socket Opteron 6100, the latency of
reading an L1 cache line from a diagonal remote socket is
higher than that from horizontal or vertical remote socket,
as illustrated in Figure 20. The time overhead is 3(Rs +
2Rl) + 2(Rr + 2Rl) + (Rd + Rl) + (Rs + Rl) = 608.4 ns,
in which Rd denotes latency of read other L1 cache from
diagonal remote socket. The practical runtime is 647.4 ns,
which is also a little higher than that model prediction.

The tiled-reduce followed by a broadcast gets the best per-
formance for large vector sizes. In this section, we utilize the
performance models to select the best algorithm for different
vector sizes. We measure all the values (latency and band-
width) in Equation (5) and Equation (11) on Westmere, and
we present the predicted runtime obtained from the perfor-
mance models and the real runtime of tree-based algorithm
and tiled-reduce-broadcast in Figure 21 and Figure 22 re-
spectively. We see that the models can predict latencies
accurately and the relative errors are all below 5%.

Figure 23 shows that, on Westmere, the tree-based algo-
rithm gets the best performance for small vector size, while
the crosspoint at 16 KB indicates that the best algorithm
switches to tiled-reduce followed by a broadcast. The cross-
point on Magny-Cours is 14 KB, as illustrated in Figure 24.

3.5 Comparison with OpenMP
We compare our performance with another native shared-

memory programming environment, OpenMP. We previ-
ously discussed how our techniques can be used in the con-
text of MPI. However, we could not easily quantify the
source of the benefits because current MPI implementations
do not exploit direct shared-memory communication. Thus,
in this section, we implemented HMPI Reduce with the tech-
niques described above and compare it with OpenMP reduc-
tions that have been optimized for direct shared-memory
accesses.

Figure 25 and Figure 26 compare our best Reduce algo-
rithms with an OpenMP REDUCTION clause [16] on West-
mere and Magny-Cours respectively. C based OpenMP does
not support reduction on vectors, so we use Fortran based
OpenMP reduction for our comparison. We use 12 threads
for both HMPI Reduce and OpenMP on Westmere. We

see that HMPI Reduce achieves on average 1.5X and 1.8X
speedup over OpenMP for all the vector sizes on Westmere
and Magny-Cours respectively, due to the hierarchy-aware
HMPI Reduce implementation on NUMA machines.

3.6 Performance on Distributed Memory
We now compare the algorithms of thread-based Allre-

duce on 16-node Xeon cluster combining inter- and intran-
ode communications. As on shared memory, on-node dis-
semination exhibits the worst performance among our algo-
rithms, as illustrated in Figure 27. For the internode dissem-
ination, each node has to communicate with another node by
point-to-point communication, probably causing more com-
munication overhead than the current process-based MPI
allreduce implementation [22, 18, 21], which is used for in-
ternode allreduce in tree and tiled-reduce-broadcast.
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Figure 27: Performance comparison between
HMPI Allreduce algorithms on 16-node Xeon
X5650 running on 192 cores

1
e

+
0

1
 

1
e

+
0

3
 

1
e
+

0
5
 

1
e

+
0
7
 

8 64 1K 16K 768K 16M 256M

1.5 

2.0 

2.5 

3.0 

3.5 

L
a

te
n

c
y
 [
u

s
]

S
p

e
e
d

u
p

 n
o

rm
a

liz
e
d
 t

o
 M

V
A

P
IC

H
2

Vectorsize [Bytes]

HMPI_Allreduce

MPI_Allreduce [mvapich2]

Speedup of HMPI_Allreduce

Figure 28: Performance comparison between
HMPI’s Allreduce and MVAPICH2 on 16-node
Xeon X5650 running on 192 cores

We compare thread-based MPI allreduce, broadcast, and
reduce with MPICH2 1.4 and MVAPICH2 1.6. For both
MPI and HMPI, the total number of launched ranks is equal
to the total number of cores in the cluster. On 16-node Xeon
X5650 and 8-node Opteron 6100 clusters, HMPI Allreduce
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Figure 29: Performance comparison between
HMPI’s Allreduce and MVAPICH2 on 8-node
Opteron 6100 running on 256 cores
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Figure 30: Performance comparison between
HMPI’s Bcast and MVAPICH2 on 16-node Xeon
X5650 running on 192 cores
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Figure 31: Performance comparison between
HMPI’s Bcast and MVAPICH2 on 8-node Opteron
6100 running on 256 cores

gets on average 2.5X and 2.3X speedup over MVAPICH2,
and gets on average 6.3X and 4.7X speedup over MPICH2.
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Figure 32: Performance comparison between
HMPI Reduce and MVAPICH2 on 16-node Xeon
X5650 running on 192 cores
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Figure 33: Performance comparison between
HMPI Reduce and MVAPICH2 on 8-node Opteron
6100 running on 256 cores
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Figure 34: Performance comparison between
HMPI Barrier and MVAPICH2 on Xeon X5650
cluster (12, 24, 48, 96, and 192 cores)

The performance comparison between HMPI Allreduce and
MVAPICH2 on 16-node Xeon X5650 cluster and 8-node
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Figure 35: Performance comparison between
HMPI Barrier and MVAPICH2 on Opteron cluster
(32, 64, 128, 256, and 512 cores)
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Figure 36: Dense matrix vector multiplication on
Xeon X5650 cluster (12, 24, 48, and 96 cores)
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Figure 37: Dense matrix vector multiplication on
Opteron 6100 cluster (32, 64, 128, and 256 cores)

Opteron 6100 cluster are shown in Figures 28 and 29 re-
spectively. Figures 30 and 31 show that HMPI Bcast gets
on average 1.8X and 2.1X speedup over MVAPICH2 on the
16-node Xeon X5650 cluster and 8-node Opteron 6100 clus-
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Figure 38: Tree-building in Barnes-hut on Xeon
X5650 cluster (12, 24, 48, 96, and 192 cores)
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Figure 39: Tree-building in Barnes-hut on Opteron
6100 cluster (32, 64, 128, 256, and 512 cores)

ter repectively. Figures 32 and 33 show that HMPI Reduce
on average 1.4X and 1.6X speedup over MVAPICH2 on the
16-node Xeon X5650 cluster and 8-node Opteron 6100 clus-
ter repectively. Figures 34 and 35 show that HMPI Barrier
scales better than MVAPICH2. The results indicate that
the thread-based MPI collectives design, which is a true
zero-copy approach with NUMA-aware topology optimiza-
tion, has significant advantage over traditional process-based
MPI collectives.

3.7 Application Comparison
Two applications, dense matrix vector multiplication and

tree-building in Barnes-Hut, are used to evaluate the per-
formance of HMPI mainly stressing our collective opti-
mizations. We compare HMPI implementation with MVA-
PICH2, which is the best performing MPI implementation
in our earlier experiments. The dense matrix vector multi-
plication is computed for 128 iterations and the matrix size
is 49,152 × 49,152. The matrix is partitioned columnwise
and scattered to all the processes using MPI Scatter. The
vector is broadcast to all the processes using MPI Bcast.
Within each iteration, each process use an MPI Reduce to
sum the corresponding part of the intermediate results. As
illustrated in Figures 36 and 37, HMPI has better scalability



and gets on average 1.2X and 1.3X speedup over MVAPICH2
on the 16-node Xeon X5650 cluster and 8-node Opteron 6100
cluster repectively.

Allreduce is a key operation in the tree-building algorithm
of the Barnes-Hut n-body simulation [27]. Tree building re-
lies on allreduce to achieve high level alignment of space
partitions. Processes compute local costs of subspaces and
then use an allreduce to sum local costs of subspaces to get
the global cost of these subspaces. Because processes split
the simulation space recursively, multiple allreduce opera-
tions on different vector length are used until there is no fat
subspace. We set the number of bodies to 4 million and test
the allreduction phase of the tree building algorithm on 1,
2, 4, 8, and 16 Xeon X5650 nodes and Operon 6100 nodes,
and HMPI shows on average 2.8X and 3.9X speedup over
MVAPICH2 respectively. Moreover, as the number of nodes
increases, the improvement becomes more apparent, as il-
lustrated in Figuresi 38 and 39. Overall, results on real ap-
plications indeed validate the advantage of the thread-based
MPI collectives design.

4. RELATED WORK
Several MPI implementations have optimizations for

shared memory based on a process per MPI rank model.
In MVAPICH2, shared-memory-based collectives have been
enabled for MPI applications running over OFA-IB-CH3,
OFA-iWARP-CH3, and uDAPL-CH3 stack. Currently, this
support is available for the following collective operations:
MPI Allreduce, MPI Reduce, MPI Barrier, and MPI Bcast
[11]. Open MPI provides sm BTL (shared-memory Byte
Transfer Layer) as a low-latency, high-bandwidth mecha-
nism for transferring data between two processes via shared
memory. According to the hardware architecture, Open
MPI will choose the best BTL available for each commu-
nication. Other MPI implementations, such as LA-MPI [2]
and Sun MPI [19], also have support for shared memory.

Graham and Shipman [6] have examined the benefits of
creating shared-memory optimized multiprocess collectives
for on-node operations. They indicated the importance of
taking advantage of shared caches and reducing intersocket
memory traffic. Kielmann et al. [10] developed MagPIe,
a hierarchy-aware library of collective communication op-
erations for wide area systems. We utilize this hierarchi-
cal design method to implement NUMA-aware collectives
of HMPI. Tang and Yang [20] presented thread-based MPI
system for SMP clusters and showed that multi-threading,
which provides a shared-memory model within a process,
can yield performance gain for MPI communication because
of speeding the synchronization and reducing the buffering
and orchestration overhead. Their experimental results indi-
cated that even in a cluster environment for which internode
network latency is relatively high, exploiting thread-based
MPI execution on each node can deliver substantial perfor-
mance gains. A hybrid of multiprocess and multithreading
runtime system for Partitioned Global Address Space lan-
guages is presented in [3].

Tree-based barriers, such as the Combining Tree Barrier
[25] and the MCS Barrier [12], are designed to distribute hot-
spot accesses over a software tree. This rationale is also used
in HMPI when designing synchronization operations, such as
HMPI Barrier, and also collective operations, such as tree-
based HMPI Allreduce. Dissemination-based barriers [7, 12]
achieve complete dissemination of information among p pro-

cesses in log2p synchronized steps. We utilize this algorithm
to implement dissemination-based allreduce which further
evolves to 3D dissemination (intrasocket, intersocket and
then internode) to reduce communication overhead. Zhang
et al. [26] have exploited program-level transformations to
lift the parallel programs to be cache-sharing-aware, which
motivated us when optimizing the collective algorithms to
take advantage of shared cache.

5. CONCLUSIONS AND DISCUSSION
In the era of multicore or manycore, parallel programming

languages or libraries need to provide high performance and
low power consumption for scientific computing applications
on both shared and distributed memory. In this paper, we
improve MPI performance, the most popular library inter-
face for high-performance computing, using multithreading
for collective communications. Multithreading has several
advantages over multiprocessing on shared memory for col-
lectives: direct memory access can reduce buffer copying and
system resource overhead; and multithreading features fast
synchronization between threads.

For multithreading-based HMPI Allreduce, we design
hierarchy-aware algorithms to reduce intersocket data trans-
fer, utilize shared last-level cache in modern CMPs to reduce
data transfer latency, and adopt strip mining to improve the
cache efficiency when the dataset size exceeds the capacity
of the last-level cache.

We find that tree-based HMPI Allreduce is best for small
vector sizes while tiled-reduce followed by a broadcast is best
for large vector sizes. We compare the best allreduce algo-
rithms of HMPI with other MPI implementations. Exper-
imental results show that multithreading yields significant
performance improvement for MPI collective communica-
tion. On 16-node Xeon cluster and 8-node Opteron cluster,
HMPI Allreduce gets on average 2.5X and 2.3X speedup
over MVAPICH2 1.6, and gets on average 6.3X and 4.7X
speedup over MPICH2 1.4. We also establish performance
models for all the algorithms of HMPI Allreduce. The con-
sistency of predicted and measured running time shows the
correctness of the performance models, which can be used
for algorithm selection on new platforms.

Architecture trends indicate that the number of cores will
grow continuously and that deep memory hierarchies will be
necessary to reduce power consumption and contention on
buses. Thus, we expect that NUMA effects will be even more
important on future systems. Our developed techniques,
algorithms, and model form a basis for implementing parallel
communication algorithms on such future architectures.
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