Optimizing array reference checking in Java programs

by S. P. Midkiff
J. E. Moreira
M. Snir

The Java™ language specification requires that all array references be checked for validity. If a reference is invalid, an exception must be thrown. Furthermore, the environment at the time of the exception must be preserved and made available to whatever code handles the exception. Performing the checks at run time incurs a large penalty in execution time. In this paper we describe a collection of transformations that can dramatically reduce this overhead in the common case (when the access is valid) while preserving the program state at the time of an exception. The transformations allow trade-offs to be made in the efficiency and size of the resulting code, and are fully compliant with the Java language semantics. Preliminary evaluation of the effectiveness of these transformations shows that performance improvements of 10 times and more can be achieved for array-intensive Java programs.

Three goals of the Java™ programming language and execution environment are bit-for-bit reproducibility of results on different platforms, safety of execution, and ease of programming and testing. A crucial component of the Java language specification for achieving the latter two goals is that a program only be allowed to access objects via a valid pointer, and that programs only be allowed to access elements of an array that are part of the defined extent of the array. A naive implementation of this specification component requires every access to every element of an array to check the validity of all base pointers and indices involved in the access.

Figure 1 shows a typical representation of a four-dimensional array in Java. A naive checking of a reference to element $A[1][2][3][4]$, indicated in the figure, would require four base pointer tests and four range tests: $A, A[1], A[1][2]$, and $A[1][2][3]$ must all be tested as valid pointers; 1, 2, 3, and 4 must all be tested as valid indices along the corresponding axes of the array. If the entire array is accessed, a total of $4N$ base pointer tests and $4N$ range tests will be necessary, where N is the total number of elements in the array. In this paper, we present a suite of techniques to greatly reduce the number of run-time tests. In many cases, the run-time tests can be completely eliminated.

The above-mentioned goal of bit-for-bit reproducibility of results, combined with the ability to catch exceptions and examine the state of the program at the time the exception was thrown, imply that it is not sufficient to determine that an invalid reference occurred. Rather, any optimizations of valid reference checking must cause all exceptions that would have been thrown in the original program to still be thrown. The exceptions must be thrown in precisely the same order, with respect to the rest of the computation, dictated by the original program semantics. The techniques we describe fulfill this requirement. Our methods also handle loops that catch exceptions within their bodies (i.e., with nested try blocks).

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.
We note that the techniques and methods described here are not restricted to Java. They can be applied to any language in which the bounds of an array can be determined at run time. They could be used, for example, in C and FORTRAN compilers that want to provide an option to check array references.

The rest of this paper is organized as follows. The next section presents an informal overview of our optimizations and is followed by an introduction to the concept of safe bounds, used throughout the paper. The fourth section presents the first of our optimization techniques, the exact method. The succeeding sections present other techniques, the general, compact, and restricted methods, respectively. The eighth section discusses an inspector-executor variant of our methods, to handle more complex cases. The ninth section explains our optimizations in the context of multithreaded execution. Finally, we present our conclusions.

Overview of the optimizations

The main goal of our work is to develop techniques that minimize the number of run-time tests that must be performed for array reference operations in Java. An array \(A \) is defined by a lower bound \(\text{lo}(A) \) and an upper bound \(\text{up}(A) \). We use a Java-like notation for array declarations:

\[
\text{double } A[] = \text{new double}[\text{lo}(A) : \text{up}(A)]
\]

declares a one-dimensional array \(A \) of doubles. Note that we allow an explicit declaration of the lower bound \(\text{lo}(A) \) of array \(A \). In Java, the lower bound is always zero. Also, Java array declarations specify the number of elements of the array. Therefore, the Java declaration

\[
\text{double } A[] = \text{new double}[n]
\]

would correspond to the declaration

\[
\text{double } A[] = \text{new double}[0:n - 1]
\]

in our notation.

An array element reference is denoted by \(A[\sigma] \), where \(\sigma \) is an index into the array. For the reference to be valid, \(A \) must not be \text{null}, and \(\sigma \) must be within the valid range of indices for \(A \): \(\text{lo}(A), \text{lo}(A) + 1, \ldots, \text{up}(A) \). If \(A \) is \text{null}, then the reference causes a null pointer violation. In Java, this corresponds to the throwing of a NullPointerException. If \(A \) is a valid pointer and \(\sigma \) is less than the lower bound \(\text{lo}(A) \) of the array, then the reference causes a lower bound violation. If \(A \) is a valid pointer and \(\sigma \) is greater than the upper bound \(\text{up}(A) \) of the array, then the reference causes an upper bound violation. Java does not distinguish between lower and upper bound violations. A bound violation (lower or upper) in Java causes an ArrayIndexOutOfBoundsException to be thrown.

Multidimensional arrays are treated as arrays of arrays:

\[
\text{double } M[][] = \text{new double}[l_1 : u_1][l_2 : u_2]
\]
declares an array M with lower bound l_1 and upper bound u_1. Each element of M is an array of doubles, with lower bound l_2 and upper bound u_2. M is an example of a rectangular array. Rectangular arrays have uncoupled bounds along each axis. As in Java, we also allow ragged arrays, where the bounds for one axis depend on the coordinate along another axis. A triangular array is an example of a ragged array:

```java
double $T[][] = new$ double[1:n][]
```

Even though ragged arrays are allowed and treated by our techniques, we do have optimizations that take advantage of rectangular arrays.

Arbitrary array lower bounds, the distinction between lower bound and upper bound violations, and treatment for rectangular arrays are features of our work that are not strictly necessary for Java applications. Our motivation to include them is twofold: First, we want our methods to be applicable to other programming languages, in particular C, C++, and FORTRAN 90. Second, we want to be prepared to handle extensions to Java that are being considered to efficiently support numerical computing, as described in Reference 2.

Array accesses typically occur in the body of loops. Our optimizations operate on do-loops, which are for-loops of the form:

```java
for (i = l; i <= u; i++){
    B(i)
}
```

where i is the index variable of the loop, l defines the lower bound of the loop, and u defines the upper bound of the loop. The iteration space of the loop is defined by the range of values that i takes: $l, l+1, \ldots, u$. All loops have a unit step, and therefore a loop with $l > u$ has an empty iteration space. $B(i)$ is the body of the loop, which typically contains references to the loop index variable i. As a shorthand, we represent the above loop structure by the notation $L(i, l, u, B(i))$. Note that loops with positive nonunit strides can be normalized by the transformation

```java
for (i = l; i <= u; i = i + s){
    B(i)
}
```

becomes

```java
for (i = 0; i <= (u - l) / s; i++){
    B(l + is)
}
```

A loop with negative stride can be first transformed into a loop with a positive stride:

```java
for (i = u; i >= l; i = i - s){
    B(i)
}
```

becomes

```java
for (i = l; i <= u; i = i + s){
    B(u + l - i)
}
```

Loops are often nested within other loops. Standard control-flow and data-flow techniques can be used to recognize many for, while, and do-while loops, which occur in Java and C, as do-loops. Many goto loops, occurring in C and FORTRAN, can be recognized as do-loops as well.

Four different tests can be applied to an array reference $A[i]$. A null test verifies whether A is a null pointer. An lb test verifies whether $i \geq lo(A)$, and a ub test verifies whether $i \leq up(A)$. Finally, a test called all tests verifies whether $lo(A) \leq i \leq up(A)$. Tests for bounds subsume null tests, since a null array can be set to have an empty extent. Furthermore, we show in the next section that for do-loops only one of three cases can occur for each iteration and each array reference: (1) an lb test is required, (2) a ub test is required, or (3) no test is required. In many situations it is possible to precisely determine which case occurs. In other situations, one has to be conservative and adopt a stronger test than absolutely required. In particular, an all tests can be used to detect any possible violations.

We introduce later a method for deriving the minimum set of tests required at each iteration of a simple loop with no nesting. This method will be referred to as the exact method. It provides the general framework that is used by the subsequent methods, which handle nested loops. The exact method specifies, for each iteration and each array reference, which test
of the three named above is required, if any. A loop with \(p \) array references in its body is split at compile time into up to \(3^p \) consecutive regions, each with a specialized version of the loop body. At run time, no more than \(2p + 1 \) regions are actually executed.

This level of code replication is not practical in general. However, one can reduce the number of code versions by merging together regions, at the expense of performing superfluous tests. This is shown in the section describing the general method. In practice, this does not increase execution time. The regions where tests are required will usually be found to be empty at run time so that the tests in these regions are never normally executed. Reducing the number of distinct regions will not only decrease code size, but may also decrease execution time. A practical version of the exact method splits an iteration space \(i = l, l + 1, \ldots, u \) into three regions:

1. A region of the iteration space where no tests are needed. This region is defined by a safe lower bound \(l' \) and a safe upper bound \(u' \). The range of values of \(i \) in this region is \(l', l' + 1, \ldots, u' \).

2. A region of the iteration space where the index variable has values smaller than the safe lower bound \(l' \). For this region \(i = l, l + 1, \ldots, l' - 1 \).

3. A region of the iteration space where the index variable has values greater than the safe upper bound \(u' \). For this region \(i = u' + 1, u' + 2, \ldots, u \).

The loop is split into three loops, each associated with a different code version. As a simpler alternative, the number of code versions can be further reduced to two: one with no tests, and one with all tests enabled.

We extend this method to nested loops in the later section, “The general method,” recursively splitting each iteration space into three regions. When applied to a perfect \(d \)-dimensional loop nest, this method leads to \(3^d \) distinct loop nests, each potentially executing a different code version. One can reduce the number of distinct code versions by merging different versions. In the extreme case, it is possible to use only two versions. This method will be referred to as the general method.

In the sixth section we present a method that avoids this exponential blow-up in static code size. This method is referred to as the compact method. When applied to a perfect \(d \)-dimensional loop nest, it results in \(2d + 1 \) loop nests. Depending on the simplifications adopted, it can use from 2 up to \(2d + 1 \) different code versions.

Finally, in the seventh section we describe a tiling method that can be applied to certain types of loop nests. It effectively implements the compact method through generated code of a very simple form. The method uses two versions for each loop body (no tests and all tests enabled). This method is referred to as the restricted method.

These four methods apply to Java as well as to FORTRAN or C and work for all machine architectures. Additional optimizations are possible in important special cases. We briefly discuss two of these optimizations now: how to determine a valid index with a single test and how to test for null pointers. We do not discuss special optimization techniques any further in this paper.

In the particular case of Java an all tests test can be implemented with a single comparison. Because Java does not distinguish between lower bound and upper bound violations, and because \(\text{lo}(A) = 0 \) always, it suffices to test if \(i < \text{up}(A) + 1 \) using unsigned arithmetic. A negative number appears, in unsigned arithmetic, as a very large positive number which, by the Java language specification, is always larger than the largest possible array extent. This technique is used, for example, in the IBM HP/J (High-Performance Compiler for Java) project.

The optimization of checks for null pointer violations in array references is a direct consequence of the optimization of checks for bound violations, as discussed in the next section. There are also many ad hoc solutions to the optimization of null pointer violations. For machines with segmented memory architecture, such as the IBM POWER2 Architecture*, null pointers can be represented by a pointer to a protected segment. For machines with linear, but paged, memory architecture, a protected segment can be simulated with a region of protected pages. Any attempts at access through a null pointer will immediately cause a hardware exception that can then be translated into the appropriate software exception. This implementation completely eliminates the need for any explicit checks for null pointer violations in the code. It is also applicable to all pointer dereferences, not just array accesses. Despite the complications in properly translating a hardware exception, this technique has been successfully used, for example, in the CCAO project.
Computing safe bounds

The basic idea of our methods is to partition the iteration space of a loop into regions. A region is a contiguous subset of the iteration space. It is characterized by a collection of tests that need to be performed for array references in that subset. We are particularly interested in finding safe regions, where we know there can be no violations in array references. If an array reference is guaranteed not to generate a violation, explicit tests are unnecessary.

We illustrate the computation of safe regions with a simple example. We then proceed to formalize it to more general cases. Consider the simple loop:

\[
\text{for } (i = l; i \leq u; i++) \{
B(i)
\}
\]

which we represent as \(L(i, l, u, B(i)) \). \(B(i) \) is the body of the loop and, in general, contains references to the loop index variable \(i \). The iteration space of this loop consists of the range of values \(i = l, l + 1, \ldots, u \).

Let there be a single array reference \(A[i] \) in the loop body \(B(i) \). We denote the lower bound of \(A \) by \(\text{lo}(A) \) and the upper bound of \(A \) by \(\text{up}(A) \). Therefore, for the array reference \(A[i] \) to be valid we must have \(\text{lo}(A) \leq i \leq \text{up}(A) \). If \(A \) is null, we define \(\text{lo}(A) = 0 \) and \(\text{up}(A) = -1 \). This guarantees that \(A[i] \) is never valid if \(A \) is null. We can split the iteration space of the loop into three regions \(r_1, r_2, \) and \(r_3 \), defined as follows:

\[
\begin{align*}
r_1 & : (l \leq i \leq u) \land (i < \text{lo}(A)) \\
r_2 & : (l \leq i \leq u) \land (\text{lo}(A) \leq i \leq \text{up}(A)) \\
r_3 & : (l \leq i \leq u) \land (i > \text{up}(A))
\end{align*}
\]

Region \(r_1 \) corresponds to those iterations of the loop for which the index \(i \) into array \(A \) is too small. Therefore, an lb test is required before each array reference in this region. No tests are required in region \(r_2 \), since the index \(i \) falls within the bounds of \(A \). Finally, a ub test is required in region \(r_3 \), because the values of \(i \) are too large to index \(A \).

Using Equation 2, we can compute the lower and upper bounds \(\ell \) and \(\mu_1 \) of the safe region:

\[
\ell = \max(l, \text{lo}(A))
\]

Similarly, we use Equation 1 and Equation 3 to compute the lower and upper bounds of regions \(r_1 \) and \(r_3 \), respectively:

\[
\begin{align*}
r_1 & : i = \ell, \ldots, \mu_1 \land (i < \text{lo}(A)) \\
r_3 & : i = \mu_1 + 1, \ldots, u
\end{align*}
\]

Note that \(\mu_1 + 1, \text{lo}(A) = \mu_1 \) except when \(\text{lo}(A) < l \) or \(\text{lo}(A) > u + 1 \). In the former case, \(r_1 \) is empty; in the latter case, \(r_2 \) is empty. To handle these cases, and the symmetric upper bound cases, we redefine

\[
\ell = \min(u, \text{lo}(A))
\]

We can now express the bounds of each of the regions just in terms of \(\ell, \mu, \ell \), and \(\mu \):

\[
\begin{align*}
r_1 & : i = \ell, \ldots, \mu_1 \\
r_2 & : i = \mu, \ldots, \mu_1 \\
r_3 & : i = \mu_1 + 1, \ldots, u
\end{align*}
\]

Equations 11–13 define the same regions as Equations 6–8. The values of region bounds are different only for empty regions, but they are still empty.

In Figure 2 we illustrate the values of \(\ell \) and \(\mu_1 \) for different relative positions of iteration bounds and array bounds. Figure 2A has empty regions \(r_1 \) and \(r_3 \), whereas region \(r_2 \) comprises the entire iteration space. Region \(r_1 \) is empty in Figure 2B, whereas region \(r_3 \) is empty in Figure 2C. All three regions are nonempty in Figure 2D. Regions \(r_2 \) and \(r_3 \) are empty in Figure 2E, because all values of \(i \) fall below the lower bound of \(A \). Finally, regions \(r_1 \) and \(r_2 \) are empty in Figure 2F, since all values of \(i \) fall above the upper bound of \(A \).

In the general case, we have an array reference of the form \(A[f(i)] \) in the body \(B(i) \) of a loop. Depending on the behavior of \(f(i) \), we can compute safe bounds \(\ell \) and \(\mu \) that partition the iteration space into three regions, as defined by Equations 11–13. Region \(r_2 \) is safe, and no test is defined in it. We define tests \(r_1 \) and \(r_3 \) that are sufficient for regions
Expressions for ξ, η, and τ for various forms of $f(i)$ are described in Appendix A. The safe bounds are computed so that we always have $\eta \geq \xi - 1$ and $\xi \leq \eta + 1$. These properties are important for the correct functioning of our methods.

An exact method
In this section we consider the case of a simple (depth one) loop, with multiple references. The exact method described here performs only the tests strictly necessary (as specified in Appendix A) to detect the
array reference violations that occur during the execution of a loop. It is, in general, of limited practicality because up to 3^p versions of the loop body must be instantiated in the code, where p is the number of array references in the loop body. In some situations, when enough information is available to the compiler, it is possible to generate efficient code using this technique. Our main interest in studying this method is that the other, more practical, transformations are derived from this technique.

In this section we treat references of the form $A[f(i)]$ that allow the computation of safe bounds as described in the previous section. The eighth section discusses how to handle more complex subscripts. We first describe how the method generates optimized code, and then we illustrate the method with an example.

Code generation. The method works as follows. Let $L(i, l, u, B(i))$ be a loop on index variable i and body $B(i)$. Let there be p references of the form $A_j[f_j(i)], j = 1, \ldots, p$, in body $B(i)$. Each array reference $A_j[f_j(i)]$ partitions the iteration space into three (each possibly empty) regions:

- $R_j[1]: i = l, \ldots, u^j - 1$
- $R_j[2]: i = u^j, \ldots, u^j$
- $R_j[3]: i = u^j + 1, \ldots, u$

as defined by Equations 11–13. We call these regions defined by a single array reference simple regions. Also, each region $R_j[k]$ has a test $\tau_j[k]$ associated with it, which describes what kind of test has to be performed for reference $A_j[f_j(i)]$ in that region. The test $\tau_j[2]$ for region $R_j[2]$ always specifies no test, because $R_j[2]$ is a safe region with respect to this reference. The tests $\tau_j[1]$ and $\tau_j[3]$, for regions $R_j[1]$ and $R_j[3]$, respectively, can be any one of ub test (an upper bound test), lb test (a lower bound test), or all tests (both a lower and an upper bound test). The exact choice depends on characteristics of the array reference $A_j[f_j(i)]$. This issue is discussed in detail in Appendix A. For each region $R_j[k]$ we denote its lower bound by $\ell_j[k]$ and its upper bound by $u_j[k]$.

Two references $A_j[f_j(i)]$ and $A_k[f_k(i)]$ can be thought of as partitioning the iteration space into five regions defined by the four points $\ell_j[1], \ell_k[1], u_j[1], u_k[1]$. We illustrate this in Figure 3 for two references, $A_1[f_1(i)]$ and $A_2[f_2(i)]$. Note that some of the resulting regions may be empty, in general. The resulting regions are a subset of the $3 \times 3 = 9$ regions formed by all combinations of intersections of two simple regions, one from each reference.

In general, given the p references $A_j[f_j(i)]$, we can create a vector of all 3^p regions formed by intersecting the simple regions from different array references:

$$R[x_1 \cdot x_2 \cdot \ldots \cdot x_p] = R[x_1] \cap R[x_2] \cap \ldots \cap R[x_p] \quad (14)$$

Each index x_k is 1, 2, or 3. The lower bound of a region $R[x_1 \cdot x_2 \cdot \ldots \cdot x_p]$ is the maximum of the lower bounds of the forming simple regions. Corresponding
ingly, its upper bound is the minimum of the upper bounds of the forming simple regions:

\[
\sigma[x_1 \cdot x_2 \cdot \ldots \cdot x_p] = \max(\sigma[x_1], \sigma[x_2], \ldots, \sigma[x_p]) \tag{15}
\]

\[
\sigma[x_1 \cdot x_2 \cdot \ldots \cdot x_p] = \min(\sigma[x_1], \sigma[x_2], \ldots, \sigma[x_p]) \tag{16}
\]

Finally, the tests that characterize region \(\sigma[x_1 \cdot x_2 \cdot \ldots \cdot x_p]\) can be described by:

\[
\tau[x_1 \cdot x_2 \cdot \ldots \cdot x_p] = \{\tau[x_j], j = 1, \ldots, \rho\} \tag{17}
\]

That is, the combination of the tests for each simple region \(\tau[x_j]\).

Using this partitioning of the iteration space into \(3^\rho\) regions, the loop

\[
\text{for } (i = l; i \equiv u; i++) \{
B(i)
\}
\]

(18)

can be transformed into \(3^\rho\) loops, each one implementing one of the regions \(\sigma[x_1 \cdot x_2 \cdot \ldots \cdot x_p]\). The body of each region can be specialized to perform exactly the tests described by \(\tau[x_1 \cdot x_2 \cdot \ldots \cdot x_p]\). We use \(B_{x_1,x_2,..,x_p}(i)\) to denote the body \(B(i)\) specialized with the tests described by \(\tau[x_1 \cdot x_2 \cdot \ldots \cdot x_p]\):

\[
\text{for } (i = \sigma[1 \cdot 1 \cdot \ldots \cdot 1]; i \equiv \sigma[1 \cdot 1 \cdot \ldots \cdot 1]; i++)(B_{11}(i))
\]

\[
\text{for } (i = \sigma[1 \cdot 1 \cdot 2]; i \equiv \sigma[1 \cdot 1 \cdot 2]; i++)(B_{12}(i))
\]

\[
\text{for } (i = \sigma[1 \cdot 1 \cdot 3]; i \equiv \sigma[1 \cdot 1 \cdot 3]; i++)(B_{13}(i))
\]

\[
\text{for } (i = \sigma[2 \cdot 1 \cdot \ldots \cdot 1]; i \equiv \sigma[2 \cdot 1 \cdot \ldots \cdot 1]; i++)(B_{21}(i))
\]

\[
\text{for } (i = \sigma[2 \cdot 1 \cdot 2]; i \equiv \sigma[2 \cdot 1 \cdot 2]; i++)(B_{22}(i))
\]

\[
\text{for } (i = \sigma[2 \cdot 1 \cdot 3]; i \equiv \sigma[2 \cdot 1 \cdot 3]; i++)(B_{23}(i))
\]

Out of the \(3^\rho\) possible regions formed by the intersection of the simple regions, no more than \(2^\rho + 1\) are nonempty and are actually executed at run time. Which of the \(3^\rho\) regions are nonempty depends on the relative positions of the \(2\rho\) safe bounds \(x^1, \ldots, x^\rho, \xi^1, \ldots, \xi^\rho\). Let \(p_0, \ldots, p_{2^\rho} \) be the list obtained by sorting \(x^1, \ldots, x^\rho, \xi^1, \ldots, \xi^\rho\) in ascending order. Define \(p_0 = 1\) and \(p_{2^\rho+1} = u + 1\). The safe bounds \(x^1, \ldots, x^\rho, \xi^1, \ldots, \xi^\rho\) partition the iteration space into \(2^\rho + 1\) (each possibly empty) regions \(\sigma[k], k = 0, 1, \ldots, 2^\rho\) defined by

\[
\sigma[k]; i \equiv p_k, \ldots, p_{k+1} - 1
\]

Each region \(\sigma[k]\) corresponds to a region \(\sigma[x_1 \cdot x_2 \cdot \ldots \cdot x_p]\) defined by

\[
x_j = \begin{cases}
1 & \text{if } \xi^j \equiv p_{k+1} \\
3 & \text{if } \xi^j < p_k \\
2 & \text{if } (\xi^j < p_{k+1}) \land (\xi^j \equiv p_k)
\end{cases}
\]

(21)

(It can occur that both \(\xi^j \equiv p_{k+1}\) and \(\xi^j < p_k\). In that case, region \(\sigma[k]\) is necessarily empty, and the choice of \(x_j\) is irrelevant.) Let \(M(k)\) be the function that defines the correspondence \(\sigma[M(k)] = \sigma[k]\) for \(k = 0, \ldots, 2^\rho\). Then the loop

\[
\text{for } (i = l; i \equiv u; i++) \{
B(i)
\}
\]

(22)

can be transformed to
If the order of the safe bounds $\varphi_1, \ldots, \varphi_r, \varphi_1', \ldots, \varphi_r'$ is known at compile time, the mapping function $M(k)$ can also be determined. In this case, only the loop body versions that are actually executed need to be generated. In general, the order of the safe bounds is not known, and $B_{M(k)}(i)$ has to be selected at run time from the set of all possible 3^r body versions.

An example. In the interest of conciseness, we use a very simple code fragment to illustrate this method. Figure 4A illustrates the original loop to be transformed. It has two array references, $A_1[i-2]$ and $A_2[i+2]$, each generating three simple regions: $\varphi_1[1:3]$ and $\varphi_2[1:3]$, respectively. The straightforwardly transformed code, using the exact method, is shown in Figure 4B. We note that:
Now let \(n = 10 \), as shown in Figure 5A. In this case, the expressions for the safe bounds become:

\[
\begin{align*}
\phi_1 &= \min(u + 1, \max(l, 3)) \\
\phi_2 &= \min(u + 1, \max(l, -1)) \\
\eta_1 &= \max(l - 1, \min(u, n + 2)) \\
\eta_2 &= \max(l - 1, \min(u, n - 2)) \\
\tau^*[1] &= \tau^*[1] = \text{lb test} \\
\tau^*[3] &= \tau^*[3] = \text{ub test}
\end{align*}
\]

which does not provide us with enough information to order the safe bounds \(\phi^1, \phi^2, \eta^1, \) and \(\eta^2 \). We implement the code in Figure 4B according to Equation 19. We could have used the method in Equation 23, but it would still have required all \(3^p \) body versions to be generated.

Now let \(n = 10 \), as shown in Figure 5A. In this case, the expressions for the safe bounds become:

\[
\begin{align*}
\phi_1 &= \min(u + 1, \max(l, 3)) \\
\phi_2 &= \min(u + 1, \max(l, -1)) \\
\eta_1 &= \max(l - 1, \min(u, 12)) \\
\eta_2 &= \max(l - 1, \min(u, 8))
\end{align*}
\]

and we can order \(\phi^2 \leq \phi^1 \leq \eta^2 \leq \eta^1 \). In particular, this is the ordering shown in Figure 3. We only need to generate code for five loops, as shown in Figure 5B. In some cases, a compiler with appropriate symbolic analysis can even eliminate some of these five loops. For example, if the compiler could prove that \(l > 2 \), neither of the first two loops (body versions \(B_{11}(i) \) and \(B_{12}(i) \)) would be necessary.

Summary of the exact method. The exact method transforms code so that, for each iteration of the original loop, only those tests that cannot be shown to be unnecessary are performed. In the straightforward application of the method to a loop with \(\rho \) array references in its body, \(3^\rho \) new loops are generated, each with a slightly different body. No more than \(2^\rho + 1 \) of these loops are actually executed at run time. In some situations, compile-time analysis can show that
some of these loops implement empty regions of the iteration space and, therefore, can be discarded.

The general method

The general method works by partitioning the iteration space of a loop always into three regions, independent of the number of array references in the body of the loop. One of the regions is a safe region: no array reference in that region can cause a violation. Another region precedes the safe region, in iteration order. Finally, the third region succeeds the safe region, in iteration order. This method can be applied to each and every loop of an arbitrary loop nest individually. The general method does not specialize the tests as much as the exact method, but it does identify the same safe regions that can be executed without any tests.

Transforming a single loop. Consider the loop \(L(i, l, u, B(i)) \), with \(p \) references of the form \(A_i[f_1(i)] \) in its body. Using the concepts developed in the previous two sections, we can compute its safe region as the intersection of all simple safe regions. This safe region is defined by the range of values of \(i = l', l' + 1, \ldots, u' \) where:

\[
\begin{align*}
l' &= \max(l^1, l^2, \ldots, l^p) \\
u' &= \max(l' - 1, \min(l'^1, l'^2, \ldots, l'^p))
\end{align*}
\]

The \(l' - 1 \) term in the expression for \(u' \) is necessary to handle cases where the safe region is empty. We can then partition the iteration space of the loop into three (each possibly empty) regions:

- \(\mathcal{R}[1] : i = l, \ldots, l' - 1 \)
- \(\mathcal{R}[2] : i = l', \ldots, u' \)
- \(\mathcal{R}[3] : i = u' + 1, \ldots, u \)

This partitioning is not very different from our very first example in the third section, except that now it applies to a loop with an arbitrary number of array references in its body. We illustrate this for two references: \(A_i[f_1(i)] \) and \(A_i[f_2(i)] \) in Figure 6. Region \(\mathcal{R}[2] \) is the intersection of the safe simple regions \(\mathcal{R}[1][2] \) and \(\mathcal{R}[2][2] \). Correspondingly, region \(\mathcal{R}[1] \) is the union of the unsafe simple regions \(\mathcal{R}[1][1] \) and \(\mathcal{R}[2][1] \). Region \(\mathcal{R}[3] \) is the union of the unsafe simple regions \(\mathcal{R}[3][3] \) and \(\mathcal{R}[2][3] \). With reference to Figure 3, \(\mathcal{R}[1] \) is formed by merging all regions preceding \(\mathcal{R}[2] \cdot 2 \), and region \(\mathcal{R}[3] \) is formed by merging all regions succeeding region \(\mathcal{R}[2] \cdot 2 \).

Region \(\mathcal{R}[2] \) is the safe region, and its body can be implemented without any tests. We denote this version of the loop body by \(B(\text{notest}(i)) \). Conversely, the bodies of regions \(\mathcal{R}[1] \) and \(\mathcal{R}[3] \) need at least some tests. For simplicity, we can implement both with a version \(B(\text{test}(i)) \) of body \(B(i) \). This version performs an all tests test before each and every array reference.

The implementation of the general method consists of the transformation:

\[
\begin{align*}
\text{for}(i = l; i \leq u; i++)
\{ \\
\quad B(i)
\}
\end{align*}
\]
becomes

\[
\text{for } (i = l; i \leq l' - 1; i++)\{
\quad B(\text{test}(i))
\}
\]
\[
\text{for } (i = l'; i \leq u'; i++)\{
\quad B(\text{notest}(i))
\}
\]
\[
\text{for } (i = u' + 1; i \leq u; i++)\{
\quad B(\text{test}(i))
\}
\]

(39)

or, in shorthand:

\[
L(i, l, u, B(i)) \Rightarrow \begin{cases}
L_1(i, l, l' - 1, B(\text{test}(i))) \\
L_2(i, l', u', B(\text{notest}(i))) \\
L_3(i, u' + 1, u, B(\text{test}(i)))
\end{cases}
\]

(40)

The code expansion in this case is only twofold, since the same code for \(B(\text{test}(i))\) can be used twice. Methods to realize all three resulting loops using only two instances of \(B(i)\) are discussed in Appendix B.

Recursive application of the transformation. If the body \(B\) of a loop contains other loops, then the same transformation can be applied to each of the loops in \(B\). The transformation can be applied individually to each and every loop in a general loop nest. In fact, the final result is independent of the order in which the individual loops are transformed.

Consider the case of the two-dimensional loop nest \(L(i, l, u, L'(j, l, u, B(i, j)))\). By first applying the transformation to the \(L\) loop, we generate a region without any tests on array references indexed by \(i\):

\[
L(i, l, u, L'(j, l, u, B(i, j)))
\]

becomes

\[
L(i, l, l' - 1, L'(j, l, u, B(\text{test}(i), j)))
\]
\[
L(i, l', u', L'(j, l, u, B(\text{notest}(i), j)))
\]
\[
L(i, u' + 1, l, L'(j, l, u, B(\text{test}(i), j)))
\]

We can now apply the transformation to each of the three \(L'\) loops. This will generate two regions without any tests on array references indexed by \(j\) and one region without any tests on array references indexed by either \(i\) or \(j\) as seen in Figure 7. This transformation partitions the iteration space into nine regions, and requires four different versions of the loop body \(B(i)\).
An example of the general method. For simplicity, we give an example of single-threaded code with rectangular arrays. In the ninth section is a discussion of the application of these optimizations to multi-threaded code. The program of Figure 8 will be used in this example. It implements a step of a two-dimensional Jacobi relaxation. 6 We chose it because it is a well-known operation that illustrates a loop nest with various array references in its body. Also, the array references all use slightly different indices, making our example more interesting.

Figure 9 shows the loop implemented with naive tests. The statement

\[
\text{ifAccessViolation}(A, i) \text{ throwException}
\]

throws the appropriate exception if \(A \) is a null pointer, \(i \) is below the lower bound of \(A \), or \(i \) is above...
Figure 10 An example of the general method

```c
double e[1][1] = new double[l1 : u1][l2 : u2]
double h[1][1] = new double[l1 : u1][l2 : u2]
for (i1 = l1; i1 <= l1 - i1 + i1++) {
    for (j1, i1 <= l1 - i1; j1, i1++) {
        B(test(i1), test(j1, i1))
    }
    for (j1 = l1 - 1; j1, i1++) {
        B(test(i1), test(j1, i1))
    }
    for (j1 = l1 - 1; j1, i1++) {
        B(test(i1), test(j1, i1))
    }
}
for (i1 = l1; i1 <= u1; i1++) {
    for (j1 = l1; j1 <= l1 - j1; j1++) {
        B(notest(i1), test(j1, i1))
    }
    for (j1 = l1 - 1; j1++) {
        B(notest(i1), test(j1, i1))
    }
    for (j1 = l1 - 1; j1++) {
        B(notest(i1), test(j1, i1))
    }
}
```

the upper bound of A. In the actual executable code, the tests would be interweaved with the individual array references, and the order of tests would be slightly different, but this example gives an idea of the cost of naive testing. Figure 10 shows the loop nest optimized for testing using the general method. In each of the resulting loops, we list the violations that can occur in its body. The code with explicit tests for the different versions of the loop body are shown in Figure 11. The minimal tests needed for the i_1
and i_1 loops differ in that the i_1 loop only needs to test for lower bounds violations, and the i_2 loop only needs to test for upper bounds violations. By using the transformation of Equation 39, the version for both loops can be the same, as indicated in Figure 10.

Transforming the loops. The optimized code is the result of the following transformations. First, the outer i loop is split into three loops (i_1, i_2, and i_3), as shown in Figure 10. The middle loop, i_2, corresponds to those iterations of the original i loop that cannot cause bound violations on array references indexed by i. Within this loop, these array references need not be tested. This is the safe region for loop i.

The first loop, i_1, executes those iterations of the original i loop whose values of i precede the safe region. Within this loop, all array references indexed by i need to be tested. Because the subscript expres-
Figure 12 Lower and upper safe bounds for each reference

(A) Array references indexed by i

<table>
<thead>
<tr>
<th>reference</th>
<th>$f_i(i)$</th>
<th>L_i^e</th>
<th>U_i^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a[i]$</td>
<td>$f_1(i) = i$</td>
<td>$L_1^e = \min(u_i + 1, \max(l_p, l_1))$</td>
<td>$U_1^e = \max(l_i - 1, \min(u_p, u_1))$</td>
</tr>
<tr>
<td>$a[i]$</td>
<td>$f_2(i) = i$</td>
<td>$L_2^e = \min(u_i + 1, \max(l_p, l_1))$</td>
<td>$U_2^e = \max(l_i - 1, \min(u_p, u_1))$</td>
</tr>
<tr>
<td>$a[i + 1]$</td>
<td>$f_3(i) = i + 1$</td>
<td>$L_3^e = \min(u_i + 1, \max(l_p, l_1 - 1))$</td>
<td>$U_3^e = \max(l_i - 1, \min(u_p, u_1 - 1))$</td>
</tr>
<tr>
<td>$a[i - 1]$</td>
<td>$f_4(i) = i - 1$</td>
<td>$L_4^e = \min(u_i + 1, \max(l_p, l_1 + 1))$</td>
<td>$U_4^e = \max(l_i - 1, \min(u_p, u_1 + 1))$</td>
</tr>
<tr>
<td>$b[i]$</td>
<td>$f_5(i) = i$</td>
<td>$L_5^e = \min(u_i + 1, \max(l_p, l_1))$</td>
<td>$U_5^e = \max(l_i - 1, \min(u_p, u_1))$</td>
</tr>
</tbody>
</table>

(B) Array references indexed by j

<table>
<thead>
<tr>
<th>reference</th>
<th>$f_j(j)$</th>
<th>L_j^e</th>
<th>U_j^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a[i][j + 1]$</td>
<td>$f_1(j) = j + 1$</td>
<td>$L_1^e = \min(u_i + 1, \max(l_p, l_2 - 1))$</td>
<td>$U_1^e = \max(l_i - 1, \min(u_p, u_2 - 1))$</td>
</tr>
<tr>
<td>$a[i][j - 1]$</td>
<td>$f_2(j) = j - 1$</td>
<td>$L_2^e = \min(u_i + 1, \max(l_p, l_2 + 1))$</td>
<td>$U_2^e = \max(l_i - 1, \min(u_p, u_2 + 1))$</td>
</tr>
<tr>
<td>$a[i + 1][j]$</td>
<td>$f_3(j) = j$</td>
<td>$L_3^e = \min(u_i + 1, \max(l_p, l_2))$</td>
<td>$U_3^e = \max(l_i - 1, \min(u_p, u_2))$</td>
</tr>
<tr>
<td>$a[i - 1][j]$</td>
<td>$f_4(j) = j$</td>
<td>$L_4^e = \min(u_i + 1, \max(l_p, l_2))$</td>
<td>$U_4^e = \max(l_i - 1, \min(u_p, u_2))$</td>
</tr>
<tr>
<td>$b[i][j]$</td>
<td>$f_5(j) = j$</td>
<td>$L_5^e = \min(u_i + 1, \max(l_p, l_2))$</td>
<td>$U_5^e = \max(l_i - 1, \min(u_p, u_2))$</td>
</tr>
</tbody>
</table>

In a typical correct numerical code, where all references are in bounds, only the body of loop $j_{1,2}$ will execute. This body is represented by $B(\text{notest}(i), \text{notest}(j))$, and because it has no tests, it executes faster.

Computing the bounds of the split loops. To compute the bounds for the resulting i_1, i_2, and i_3 loops, we first have to compute the safe bounds for loop i: l_i^e and u_i^e. In the body of the i loop there are five array references indexed by i: $a[i], a[i]$, $a[i + 1]$, and $a[i - 1]$. The values of ψ_i^e and ϕ_i^e are shown in Figure 12A. They are computed using Equation 64 of Appendix A. The values of l_i^e and u_i^e can be computed according to Equations 34 and 35:

$$l_i^e = \max(l_i^e, \psi_i^e, \phi_i^e)$$

$$u_i^e = \max(l_i^e - 1, \min(u_i^e, \psi_i^e, \phi_i^e))$$

The bounds for the resulting j loops are computed similarly. In the body of the j loop there are five array references indexed by j: $(a[j])[j + 1], (a[j])[j - 1], (a[i + 1])[j], (a[i - 1])[j]$, and
(b[i])[j]. Note that b[i], a[i], a[i + 1], and a[i - 1] are the arrays being accessed. The values of l' and u' can be computed by Equations 34 and 35, using values of x_i^+ and x_i^- obtained through Equation 64 and shown in Figure 12B. In this example, the arrays are rectangular, and the lower and upper bounds for a[i], a[i + 1], a[i - 1], and b[i] do not depend on the value of i. (Note that, in general, l' and u' are functions of i.)

Checks that must still be done. The transformation just discussed creates regions of the loop that are free from violations on array references indexed by either i, j, or both. Figure 10 lists the specific violations that can occur in each region. Note that this particular behavior is generic to this loop. We chose to implement the loop using versions of the body that perform tests covering more than the strictly necessary violations. This allowed us to use only four versions of the loop body, as shown in Figure 10 and detailed in Figure 11. We perform an all tests test on any i reference when outside the safe region for i. Correspondingly, we perform an all tests on any j reference when outside the safe region for j.

Summary of the general method. The exact method of the previous section formed a different region of the iteration space of a loop for each possible combination of necessary array reference tests. The general method always partitions the iteration space of a loop into three regions: (1) a region for those iterations that need no test (the safe region), (2) a region for those iterations that occur prior to the safe region and (3) a region for those iterations that occur after the safe region. In each of the nonsafe loop regions, any test that might be needed for a reference in any iteration of that region is performed in all iterations of that region. This means that some additional tests might be executed compared to the exact method. For a nest of loops, the general method can be applied to each and every loop recursively and independently. Thus, for a loop nest of depth d, 3^d loop regions are created.

When generating code for the regions, several approaches can be taken. One approach generates a different version of the loop body for each region. When applied to the example of Figure 10, this would generate only lower bound tests on arrays indexed by i in the i loop and only upper bound tests in the j loop. This approach leads to 3^d versions of the loop body for a loop nest of depth d. A second approach, actually used in our example of Figures 10 and 11, uses only two versions of the loop body for each loop index: one with no tests on that index and one with all tests. This leads to 2^d versions of the loop body for a loop nest of depth d. A third approach would be to generate only two versions of the loop body, independent of the number of nested loops: one with all tests on all indices and one with no tests on any index. Obviously, the version with no tests can only be used in that region where no violations in any array reference can occur.

The compact method

The exponential expansion on the number of loops caused by the application of the general method can be highly undesirable in some cases. In this section we propose an alternative method that results in only a linear increase in the number of regions. The difference resides in how the transformation is applied to loop nests. In the compact method, the partitioning into three regions is always applied in outermost to innermost loop order. Furthermore, it is only applied to inner loops in the untested version of an outer loop body.

Again, consider the case of the two-dimensional loop nest \(L(i, l, u, L'(j, l, u, B(i, j))) \). By first applying the transformation to the outer i loop, we generate a region without tests on array references indexed by i:

\[
L(i, l, u, L'(j, l, u, B(i, j)))
\]

becomes

\[
L_1(i, l, l_1 - 1, L'(j, l, u, B(\text{test}(i, j))))
L_2(i, l_1, u, L'(j, l, u, B(\text{notest}(i, j))))
L_3(i, u_1 + 1, u, L'(j, l, u, B(\text{test}(i, j))))
\] (41)

We now apply the transformation to the instance of \(L' \) in the \(L_2 \) region. This results in a region without any tests on array references indexed by either i or j as seen in Figure 13.

This transformation partitions the two-dimensional iteration space into five regions, and requires three different versions of the loop body \(B(i) \). It still generates the same region safe on i and j as the general method.

An example of the compact method. As an example, we apply the compact method to the two-dimensional loop nest of Figure 8. The resulting code is shown.
in Figure 14. Note that only loop i_2 has its j loop partitioned into three regions. When applied to a d-dimensional loop nest, the compact method generates $2d + 1$ regions of the loop iteration space. Because the two regions preceding and succeeding a safe region are similar, only $d + 1$ versions of the loop body must be generated.

Summary of the compact method. Like the general method of the previous section, the compact method divides each loop into one safe and two nonsafe regions. The differences between the two methods are manifested only when applying the transformation to a loop nest. The general method splits all nested loops into three regions, whereas the compact method splits only loops nested within the version without tests. This implies that within the nonsafe versions of an outer loop the compact method may perform more tests than the general method. The benefit is that only a linear number of loop regions ($2d + 1$ for a loop nest of depth d) are necessary with the compact method, opposed to an exponential number with the general method. The number of versions of the loop needed is a linear function of the nesting depth of the loop ($d + 1$ for a loop nest of depth d).

The number of versions of code can be further reduced to two by using a fully tested version on any region that needs tests. Also, if the loop nesting is perfect, the structure of the generated code can be greatly simplified when only two versions are used. These observations provide the motivation for the restricted method of the next section.

The restricted method

We now consider a transformation that can be applied to perfect loop nests, or any loop nest that can be transformed to a perfect loop nest via compiler techniques. The restricted method partitions the loop into multiple regions. Each region executes either a test (all array references are fully tested) or a notest (no array references are tested) version of the loop body. Having a perfect loop nest allows us to map every iteration of the loop nest onto a single point in a d-dimensional space, where d is the depth of the loop nest. Partitioning the loop into test and notest regions is equivalent to tiling this iteration space.

The advantage of the restricted method, when applied to a perfect d-dimensional loop nest, is that it can be implemented with only one instance of each version of the loop body. Also, the instances can be generated in place in a fixed loop structure. The previous methods, when implemented with only two versions of code, require a specialized loop structure that invokes those versions from more than one point in the program.

We start by considering a d-dimensional rectangular loop nest:

$$L_1(i_1, l_{1}, u_{1}, L_2(i_2, l_{2}, u_{2}, \ldots , \quad , L_d(i_d, l_{d}, u_{d}, B(i_1, i_2, \ldots , i_d)) \ldots))$$

That is, the bounds l_i and u_i of loop i_i do not depend on the values of i_1, \ldots, i_{i-1}. The iteration
space of this loop can be partitioned into consecutive regions described by a vector \(\mathbf{R}[1 : u_4] \). Each entry in this vector has the form:

\[
\mathbf{R}[\delta] = (l(\delta), u(\delta), \tau) \tag{43}
\]

\[
l(\delta) = (l_1(\delta), l_2(\delta), \ldots, l_d(\delta)) \tag{44}
\]

\[
u(\delta) = (u_1(\delta), u_2(\delta), \ldots, u_d(\delta)) \tag{45}
\]

\[
\tau = \{\text{test} | \text{notest}\} \tag{46}
\]

The vectors \(l \) and \(u \) define the lower and upper bounds for each loop in the region, respectively. The elements \(l_i(\delta) \) and \(u_i(\delta) \) denote the lower and upper bounds, respectively, of loop \(i \) in the region \(\mathbf{R}[\delta] \). The definition of a region also contains a flag \(\tau \) that has the value test if the region requires any array reference to be tested and notest otherwise.

With partitioning, the original loop can be executed by a driver loop that iterates over the regions:

\[
\text{for} \ (\delta = 1; \ \delta \leq u_4; \ \delta++) \{ \\
\quad L_1(i_1, l_1(\delta), u_1(\delta), l_2(\delta), u_2(\delta), \ldots, \ldots, L_d(i_d, l_d(\delta), u_d(\delta), B(i_1, i_2, \ldots, i_d)) \ldots) \\
\}
\]

Note that in previous sections single-dimensional regions were described by a vector containing the upper and lower bounds for the regions. Here a multidimensional region is described by vectors with upper and lower bounds for every index variable in the loop nest. The techniques of the previous sections formed regions loop by loop, whereas the techniques of this section form regions for the entire loop nest.
Our goal is to partition the iteration space into regions that we can identify as either requiring tests on array references or not. Those regions that do not require tests can then be executed with a non-test version of the loop body. We use the same kind of partitioning described in the compact method. First, an outer loop is divided into three regions. Then, the inner loop in the region without tests is divided again. This partitioning is illustrated in Figure 15, for a two-dimensional iteration space.

Computing vector \(\mathbf{v} \). Vector \(\mathbf{v} \) can be computed by procedure \(\text{regions} \) in Figure 16. Procedure \(\text{regions} \) takes seven parameters. The first five are input parameters and describe the loop nest being optimized. They are:

1. The index \(j \) indicating that region extents along index variable \(i_j \) are being computed.
2. The vector \((\alpha_1, \alpha_2, \ldots, \alpha_{j-1}) \), where \(\alpha_k \) is the lower bound for loop index \(i_k \) in the regions to be computed.
3. The vector \((\omega_1, \omega_2, \ldots, \omega_{j-1}) \), where \(\omega_k \) is the upper bound for loop index \(i_k \) in the regions to be computed.
4. The dimensionality \(d \) of the loop nest.
5. The vector \(\mathbf{s}[1 : d] \), where \(\mathbf{s}[k] = (l'_i, u'_i, l'_i, u'_i) \) contains the full and safe bounds for loop \(i_k \).

The next two parameters are the output of the procedure. The first output parameter is the vector of regions, \(\mathbf{r} \), described in Equations 43 through 46, for the loop. The second is \(u_s \), the count of those regions. Note that \(u_s \) is also used as an input, which gets incremented each time a new region is created.

An invocation of procedure \(\text{regions} \) for a given value of \(j \) partitions the loop nest formed by loops \(i_j \),
Figure 16 Procedure to compute the regions for a loop nest

```plaintext
procedure regions($j$, ($\alpha_1$, $\alpha_2$, ..., $\alpha_{j-1}$), ($\omega_1$, $\omega_2$, ..., $\omega_{j-1}$), $d$, $\mathcal{R}$, $u_8$) {
    $u_8 = u_8 + 1$
    $\mathcal{R}[u_8] = ((\alpha_1, \ldots, \alpha_{j-1}, l_{j-1}^i, l_{j-1}^i = i_{j-1}^i, \ldots, l_{j-1}^i), (\omega_1, \ldots, \omega_{j-1}, l_{j-1}^i = i_{j-1}^i, \ldots, u_{j-1}^i), \text{test})$
    if ($j == d$) {
        $u_8 = u_8 + 1$
        $\mathcal{R}[u_8] = ((\alpha_1, \ldots, \alpha_{d-1}, l_{d-1}^i), (\omega_1, \ldots, \omega_{d-1}, u_d^i), \text{notest})$
    } else {
        for ($k = l_{j-1}^i; k \leq u_d^i; k++$) {
            regions($j + 1$, ($\alpha_1$, $\alpha_2$, ..., $\alpha_{j-1}$), ($\omega_1$, $\omega_2$, ..., $\omega_{j-1}$), $k$, $d$, $\mathcal{R}$, $u_8$)
        }
    }
    $u_8 = u_8 + 1$
    $\mathcal{R}[u_8] = ((\alpha_1, \ldots, \alpha_{j-1}, u_{j-1}^i + 1, l_{j-1}^i, \ldots, l_{j-1}^i), (\omega_1, \ldots, \omega_{j-1}, u_{j-1}^i, u_{j-1}^i + 1, \ldots, u_{j-1}^i), \text{test})$
}
```

It is only performed for safe values of $i_j, l_j, l_{j-1}, \ldots, l_{j-1}$. Procedure regions partitions loop i_j into three parts. The first part consists of iterations of i_j that precede the safe region of i_j. The inner loops of i_j are not partitioned. These regions necessarily require testing of the array references, since they are unsafe on references indexed by i_j. Regions corresponding to this part of the iteration space are computed in statements $S1$ and $S2$, and correspond to the regions $\mathcal{R}[1]$ (for $j = 1$), $\mathcal{R}[2]$, $\mathcal{R}[5]$, $\mathcal{R}[8]$, and $\mathcal{R}[11]$ (for $j = 2$) in the two-dimensional iteration space of Figure 15. The second part consists of the iterations of i_j that succeed the safe region of i_j. Again, the inner loops are not partitioned, and testing is required. Regions corresponding to this part of the iteration space are computed in statements $S11$ and $S12$, and correspond to the regions $\mathcal{R}[4]$, $\mathcal{R}[7]$, $\mathcal{R}[10]$, $\mathcal{R}[13]$ (for $j = 2$), and $\mathcal{R}[14]$ (for $j = 1$) in Figure 15. The middle (second) part consists of the iterations of i_j that are within its safe region. If i_j is the inner loop, this is computed by statements $S4$ and $S5$, and the partitioning of loop i_j is complete. No tests are required. If i_j is not the innermost loop, the partitioning is applied recursively to loop i_{j+1} for each iteration of i_j in its safe region, as shown in lines $S7$ and $S8$.

To compute the entire vector of regions, the invocation $\text{regions}(1, (\alpha_1), (\alpha_2), \ldots, (\alpha_{j-1}), (\omega_1), (\omega_2), \ldots, (\omega_{j-1}), d, \mathcal{R}, u_8 = 0)$ should be performed. At the end of the computation, vector \mathcal{R} contains the description of the regions, and the value of u_8 is the total number of regions in \mathcal{R}.

Although the example in Figure 15 and the notation imply that the iteration space passed to regions in \mathcal{R} is rectangular, the algorithm is not restricted to rectangular loop nests. In particular, if the expressions for l_j, u_j, l_{j-1}, and u_{j-1} are functions of $i_k, 1 \leq k < j$, the computation performed by regions is correct.

We can optimize the execution of the loop nest by using two versions of code inside the driver loop: (1) a version $B(\text{notest}(i_j), \text{notest}(i_{j-1}), \ldots, \text{notest}(i_1))$ that does not perform any of the array reference tests, and (2) a version $B(\text{test}(i_j), \text{test}(i_{j-1}), \ldots, \text{test}(i_1))$ that performs tests on all array references. Version 1 is used only for regions where $\mathcal{R}[8]$ is notest, while version 2 is used for all other regions. This corresponds to forcing all regions with any potential reference violation to perform all reference tests. The optimized loop nest can be implemented by the following construct:
for ($\delta = 1; \delta \leq u_\delta; \delta++)
{
 if ($\delta(\delta) \land \sigma = \text{test}()$
 {
 L_1(i_1, \ldots, i_\delta, \ldots, i_d, u_\delta(\delta),
 L_2(i_1, \ldots, i_\delta, u_\delta(\delta),
 \ldots,
 L_\delta(i_1, \ldots, i_\delta, u_\delta(\delta), B(\text{test}(i_1,$
 test(i_2), \ldots, \text{test}(i_\delta)))
 }
)
 }

An important optimization. If, for a particular value of \(j \), \(l_j^* = l_j \) and \(u_j^* = u_j \), then the safe region along axis \(i_j \) of the iteration space corresponds to the entire extent of the axis. If \(l_j^* = l_j \) and \(u_j^* = u_j \) for \(k = j, \ldots, d \), then axis \(i_j \) can be partitioned into only three regions: (1) one region from \(l_j^* \) to \(l_j^* - 1 \), (2) one region from \(l_j^* \) to \(u_j^* \), and (3) one region from \(u_j^* + 1 \) to \(u_j^* \). Each of these regions spans the entire iteration space along axes \(i_1, \ldots, i_{j-1}, i_{j+1}, \ldots, i_d \). This situation for a two-dimensional iteration space is illustrated in Figure 17. Note that the new partitioning results in only three regions. Collapsing multiple regions into a single region reduces the cost of computing the regions, the total number of iterations in the driver loop (47), and, consequently, reduces the run-time overhead of the restricted method. To incorporate this optimization in the computation of regions, procedure regions is modified as shown in Figure 37 in Appendix F.

An example of the restricted method. We apply the restricted method to the two-dimensional loop nest of Figure 8. The logical structure of the generated code is the same as that generated by the compact method in Figure 14. The actual implementation with the driver loop and the two versions of code is shown in Figure 18. The driver loop (with index \(\delta \)) of Figure 18 executes \(u_\delta \) iterations, where \(u_\delta \) is the number of regions computed by procedure regions. On each iteration, either the version of the loop with run-time tests or the version with no run-time tests is executed. The code in Figure 18 instantiates the regions dynamically. This contrasts with the static instantiation of Figure 14.

Summary of the restricted method. The restricted method works on perfect loop nests. It partitions the iteration space into multidimensional regions and generates two versions of the loop body. Each region is executed with either the test version of the body or the notest version. Only regions that are free from any possible access violation can use the notest version.

Iterative computation of loop bounds

In the third section and in Appendix A we discuss how to partition an iteration space into regions for a variety of common forms of subscript functions. In this section, we discuss how regions-based testing optimization can often be performed even when the subscript expressions are not one of the forms discussed in those sections.

The technique is similar to that of the inspector/executor method for parallelizing loops. We decompose the computation and execution of the regions into an inspector phase and an executor phase. The inspector phase examines the references within the iteration space of a loop and computes a list of iteration subspaces (regions). Some regions need runtime tests, whereas others do not. The inspector phase is analogous to procedure regions of the previous section. The executor phase traverses the list of iteration subspaces and executes them using different versions of the loop body. Thus the executor phase corresponds to the driver loop of the last section.

Construction of the inspector phase. We show how to construct an inspector for a singly nested loop. This method can then be recursively applied to a loop nest. Let \(L(i, I, u, B(i)) \) be a loop on \(i \), where \(B(i) \) contains a series of \(\rho \) references \(A_1[\sigma_1], A_2[\sigma_2], \ldots, A_{\rho}[\sigma_{\rho}] \), where \(\sigma_j \) is a function defined in the iteration space of \(L \). A reference can be of the form \(A_k[\sigma_1] \), where \(A_k \) is also an array. In general, \(A_k[\sigma_1] \) may be present as a term in \(\sigma_j \). We label the array references so that \(A_k[\sigma_j] \) executes before \(A_{k+1}[\sigma_{j+1}] \).

The inspector constructed takes the form shown in Figure 19A. The first argument to procedure regions...
is the output \mathcal{R}, a vector of regions. An element $\mathcal{R}[\delta]$ of the region vector consists of:

$$\mathcal{R}[\delta] = (l(\delta), u(\delta), \tau)$$

where $l(\delta)$ and $u(\delta)$ are the bounds of region $\mathcal{R}[\delta]$, and τ is its test flag. The next argument, u_0, is also an output: the number of regions in vector \mathcal{R}. The other arguments for procedure regions are the input of the procedure. They are: (1) the lower and upper bounds, l and u, of the loop, and (2) the list of array references $(A_1[\sigma_1], A_2[\sigma_2], \ldots, A_p[\sigma_p])$.

The inspector enumerates all iterations from the loop, by executing a for $(i = l; i \leq u; i++)$ loop. For each iteration i, it checks all array references $A_i[\sigma_j]$ and determines if a test is necessary. If the evaluation of σ_j itself causes a violation, we define $\sigma_j = -\infty$. If σ_j is invariant with respect to i, optimizations can be performed to reduce the number of evaluations in the inspector. The inspector marks in a flag check if a test is required for iteration i. If check is the same as oldcheck, this iteration i belongs to the same region as the previous iterations, and we update the upper bound of the current region. Otherwise, it is the first iteration of a new region.

Construction of the executor phase. The executor, shown in Figure 19B, consists of a driver loop (indicated by an index variable δ), that iterates over the regions. Each region is executed with one of the two different versions of the loop body, one with tests and one without.

Optimizations and alternate constructions. The inspector/executor technique can be applied to each
loop in a loop nest independently, as we did for the general method discussed earlier. Alternatively, it can be directly applied to a d-dimensional perfect loop nest. In this case, the inspector has to enumerate all iterations in the d-dimensional iteration space, and the executor consists of a driver loop around different versions of the loop nest.

For the inspector/executor method to be effective, the inspector phase has to be hoisted out of a loop nest. When that is possible, the same vector of regions $\delta[l_1 : u_1][l_2 : u_2]$ can be used in multiple instances of the executor. The number of checks is reduced by the number of iterations in the loops from which the inspector was hoisted. We show such an example in the following subsection.

Finally, it is also possible to build an inspector/executor pair that uses more refined versions of the loop body. For example, one could use all 3^p versions generated in the exact method.

An example. In this example, the loop of Figure 20A is transformed. The inspector for this loop is shown in Figure 20B and the executor in Figure 20C. Note that we have optimized the loop by moving the inspector phase out of the j loop. This is possible because the array reference patterns are not dependent on j. Thus, even though there are $O(u_j u_j)$ computations being performed, only $O(u_j)$ tests are necessary.

Summary of inspector-based methods. The inspector-based methods differ from the exact, general, compact, and restricted methods in how regions are formed. In the former methods, regions are computed analytically using the formulas of the third section and Appendix A. In the inspector-based meth-
Figure 19 Template for constructing an inspector/executor

```plaintext
procedure regions(R, u8, l, u, (A[j], j = 1, ..., p)) {
    u8 = 0
    oldcheck = undefined
    for (i = l; i <= u; i++) {
        check = notest
        for (j = 1; j <= p; j++) {
            if ((l < lo(A[j]) ∧ (σ_j > up(A[j]))) {
                check = test
            }
            if (check == oldcheck) {
                u(u8) = i
            } else {
                u8 = u8 + 1
                l(u8) = u(u8) = i
                R[u8].τ = check
                oldcheck = check
            }
        }
    }
}
```

(A) Inspector

```plaintext
for (δ = 1; δ <= u8; δ++) {
    if (R[δ].τ == test) {
        for (i = l(δ); i <= u(δ); i++) {
            B(test(i))
        }
    } else {
        for (i = l(δ); i <= u(δ); i++) {
            B(notest(i))
        }
    }
```

(B) Executor

...ods the regions are computed by executing the code that generates the subscripts for the references being optimized. This allows references whose subscripts preclude an analytic computation of regions to be optimized. There are two caveats, however. First, because the inspector overhead is proportional within a constant factor to the cost of executing an instance of the loop, the methods are most effective when the inspector for a loop can be hoisted out of that loop. Second, there are still some loops which cannot be optimized with inspector-based methods. Figure 21 shows such a loop. Because the execution of an inspector for this loop would have side effects (other than region computation) that live beyond the life of the inspector, forming an inspector with the methods we have discussed would alter the outcome of the program. This loop can be optimized using speculative methods. Because they are not region-based, they are beyond the scope of this paper. They are discussed in Reference 8.

Multithreading considerations

Up to now, the problem of other threads of execution and optimized code being active at the same time has been ignored. If arrays had static shape, that is, if it were not possible for an array to change shape during the course of execution of a routine, multithreading would not be a problem. Multithreading is beyond the scope of the current FORTRAN, C, and C++ language definitions. Java, however, has made multithreading an integral part of the language. Furthermore, it is possible for one thread of a Java program to alter the shape of a multidimensional array that is being accessed by other threads.
The Java memory model enables a solution to this problem. The coherent copy of a shared variable resides in main memory. A local copy of any shared variable can be copied by a thread from main memory to working memory. The working memory is accessible only by the thread, and therefore is not alterable by any other thread. Java requires that:

1. No synchronization can occur within a thread between time t_m, when a variable is copied from main to local memory, and time t_a, when the variable is accessed by the thread. This can be enforced by refreshing the shared variable in local memory after a synchronization and before the access.

```java
double a[] = new double[l1 : u1]
integer b[] = new integer[l2 : u2]

for (j = 1; j ≤ u2; j++) {
    for (i = 1; i ≤ u1; i++) {
        a[i] += h(i, j)
    }
}

(A) Original loop

u8 = 0
"oldcheck = undefined"
for (i = 1; i ≤ u1; i++) {
    check = notest
    if ((i < l1) ≤ (i ≥ u1)) {
        check = test
    } elseif ((b[i] < l1) > (b[i] > u1)) {
        check = test
    }
if (check == oldcheck){
    u(u8) = i
} else {
    u8 = u8 + 1
    l(u8) = u(u8) = i
    R[u8], τ = check
    oldcheck = check
}

(B) Inspector

for (j = 1; j ≤ u2; j++) {
    for (δ = 1; δ ≤ u8; δ++) {
        if (R[δ], check == test) {
            for (i = l(δ); i ≤ u8(δ); i++){
                ifAccessViolation(b, i) throwException
                ifAccessViolation(a, b[i]) throwException
                a[b[i]] += h(i, j)
            }
        } else {
            for (i = l(δ); i ≤ u8(δ); i++){
                a[b[i]] += h(i, j)
            }
        }
    }
}

(C) Executor
```
2. Before a synchronization within a thread is finished, all shared variables that have been modified since the last synchronization point in that thread must be written back to the main memory.

3. If a shared variable has been written by a thread, it must be written to main memory before its value can be read from main memory by some thread. This prevents locally written values to shared variables from being lost.

4. As long as item 3 is obeyed, the value of a shared variable can be updated from global memory at any time prior to an access by a thread.

The consequences of the Java memory model rules to our work are threefold. First, it is legal and valid within a thread to cache in local memory the values of a variable—even if the thread is not synchronized. Second, if the thread is not synchronized, the cached values need not be written back. Third, if a synchronization point exists within a loop nest being optimized, the shapes of shared arrays have to be conservatively assumed to have changed at the synchronization point. To prove that the shape of a shared array does not change across a synchronization requires proving that none of the threads that have access to the array at that time can change its shape.

We now describe how to handle the case in which a body of code without synchronization accesses a (potentially) shared array. We can divide arrays into two distinct parts. The first part is comprised of descriptors, those parts of an array that contain pointers to other descriptors or to rows of data. The second part is comprised of data, the one-dimensional rows that contain the actual elements. In Figure 22, the dashed boxes indicate descriptors, and the solid boxes indicate data. In general, a d-dimensional rectangular array $A[1:n_1][1:n_2] \ldots [1:n_d]$ consists of one level-0 descriptor that points to a vector of n_1 level-1 descriptors. Each level-1 descriptor points to a vector of n_2 level-2 descriptors, for a total of n_1n_2 level-2 descriptors. There are a total of $O(n_1n_2 \ldots n_{d-1})$ descriptors. The last axis of the array contains the actual data, in the form of vectors of n_d elements, pointed to by the level-$(d-1)$ descriptors.

The following then ensures the thread safety of our transformations: before every optimized body of code, a copy of the descriptors part of each shared array A is cached in working memory. Note that if a cached descriptor for A that is valid by the Java thread semantics is already present, it may be used for the purposes we describe. This action insulates the thread executing the optimized code from any changes to the shared array shape caused by other threads. Also note that only the array shape is relevant in computing the safe and unsafe regions for our transformations. The data part of the array can be modified by other threads without any effects on those regions. By using this caching of descriptors, the only places that shape changes become visible are at synchronization points. The shape of a shared array should be marked as variant across those points. This, in turn, can prevent many optimizations.

At first glance, the caching of descriptors may seem expensive. In general, given a d-dimensional rectangular array $A[1:n_1][1:n_2] \ldots [1:n_d]$, only $O(n_1n_2 \ldots n_{d-1})$ storage needs to be cached. Thus, a one-dimensional array needs only a constant amount of storage, and an $n_1 \times n_2$ array needs only n_1 words of storage. Therefore, if most of the array is accessed within the loop, the amount of storage
cached is approximately a factor of \(n_d \) less than the number of references.

Experimental results

To test the effectiveness of our compiler transformations, we developed a prototype framework. This prototype framework currently implements only the restricted method and only handles perfectly nested rectangular loops. The framework consists of a Java-to-Java translator that produces the two versions of code necessary for the restricted method. These versions are then compiled into executable object code using the IBM High Performance Compiler for Java (HPCJ). HPCJ has a switch to generate code without any run-time checks, on a class basis.

Benchmarks. Using the prototype framework, we applied the transformations in the restricted method to Java programs in a benchmark suite. This suite consists of two numerical kernels and three application kernels, all with array-intensive computations. The two numerical kernels are a vector dot-product operation (DDOT), and a matrix-multiply operation (MATMUL). The three application kernels are a shallow-water simulation kernel (SHALLOW), a data-mining kernel (BSOM), and a cryptography kernel (CBC). We compare the performance of a Java implementation of each benchmark with a corresponding version written in either C (DDOT, MATMUL, and CBC) or C++ (SHALLOW and BSOM). The C and C++ versions were written and compiled according to what we call *Java rules*: (1) two-dimensional arrays are represented as vectors of pointers to one-dimensional arrays, and (2) any compiler optimizations that violate the Java IEEE 754 floating-point semantics (exact reproducibility of results) are disabled. The im-

```java
static double[] x = new double[n];
static double[] y = new double[n];

double sum = 0;
for(int i=0; i<n; i++) {
    sum += x[i] * y[i];
}
```
The DDOT benchmark computes the dot-product $\sum_{j} x_{i} y_{j}$ of two vectors x and y of n double-precision floating-point numbers. The Java code that implements DDOT is straightforward and shown in Figure 23. The C code is very similar. The computation of DDOT requires $2n$ floating-point loads and $2n$ floating-point operations (n multiplies and n adds). For our measurements we use $n = 10^6$. We report the performance of DDOT in Mflops.

MATMUL. The MATMUL benchmark computes the matrix operation $C = C + A \times B$, where C is an $m \times p$ matrix, A is an $m \times n$ matrix, and B is an $n \times p$ matrix. The elements are double-precision floating-point numbers. The Java implementation of this matrix operation is illustrated in Figure 24. The C implementation is very similar, with the matrices implemented as vectors of pointers to rows of elements. This is in accordance with the previously mentioned Java rules for C. The computation of MATMUL requires $2mnp$ floating-point operations (mnp adds and mnp multiplies). For our measurements, we used $m = n = p = 64$. We also report the performance of MATMUL in Mflops.

SHALLOW. The SHALLOW benchmark is a computational kernel from a shallow water simulation code from the National Center for Atmospheric Research (NCAR). It consists of approximately 200 lines of code, in either the C++ or Java version. The data structures in SHALLOW consist of 14 matrices (two-dimensional arrays) of size $n \times m$ each. The computational part of the code is organized as a time-step loop, with several array operations executed in each time step (iteration), as shown in Figure 25. In that figure we indicate the number of occurrences for each kind of array operation. The notations $A + A$, $A \ast A$, and A / A denote addition, multiplication, and division of all corresponding array elements. The notation $s \ast A$ denotes multiplication of a scalar value by each of the elements of an array. Therefore, each iteration of the time step loop executes $65mn$ floating-point operations. The matrix operations do not appear explicitly. Instead, they are fused into three double-nested loops.

Just as in the MATMUL benchmark, the matrices in the C++ code are implemented as vectors of point-
ers to rows of elements. For our measurements we fix the number of time steps $T = 20$ and use $n = m = 256$. Once again, performance for SHALLOW is reported in MFlops.

BSOM. BSOM (Batch Self-Organizing Map) is a data-mining kernel being incorporated into Version 2 of the IBM Intelligent Miner. It implements a neural-network-based algorithm to determine clusters of input records that exhibit similar attributes of behavior. The simplified kernel used for this study consists of approximately 300 lines of code, either in the C++ or Java version.

We time the execution of the training phase of this algorithm, which actually builds the neural network. The training is performed in multiple passes over the training data. Each pass is called an epoch. Let e be the number of epochs, let n be the number of neural nodes, let r be the number of records in the training data, and let m be the number of fields in each input record. For each epoch and each input record, the training algorithm performs nm connection updates in the neural network. Each update requires five floating-point operations.

For our measurements, we use $e = 25$, $n = 16$, and $r = m = 256$. We report the performance of BSOM in millions of connection updates per second, or MCUP/s, as is usually done in the literature for neural-network training.

CBC. Our last benchmark is an implementation of CBC, or cipher block chaining. CBC is a block cipher mode in which a feedback mechanism is used to encrypt a vector of n blocks of data. Each block is encrypted in sequence. The result of encrypting a block is XORed with the next block before encrypting this next block. Let $P = (P_1, \ldots, P_n)$ be the vector of plaintext blocks and let $C = (C_1, \ldots, C_n)$ be the vector of ciphertext blocks. Then

$$C_i = E_K(P_i \oplus C_{i-1}), \quad i = 1, \ldots, n$$

where $E_K(\cdot)$ is the encrypting function with key K, and C_0 is the initial chaining value. The CBC benchmark uses the data encryption standard (DES) algorithm to encrypt the blocks. DES transforms each 64-bit plaintext block into a 64-bit ciphertext block, using a 56-bit key.

We use our CBC benchmark to encrypt a vector of 128k blocks (1 MB) and we report its performance in millions of bytes encrypted per second (MB/s). We measure both C and Java versions of this benchmark. The CBC benchmark performs integer and logical operations on array elements. This contrasts with the mostly floating-point operations that the other four benchmarks perform.

Execution environment. We performed our experiments on an IBM RS/6000* Model 590 workstation, running Advanced Interactive Executive (AIX*) 4.2. This workstation has a 66 MHz POWER2 processor, and is configured with 256 KB of level-1 cache and 512 MB of main memory. The C and C++ programs were compiled with C Set++ version 3 for AIX and we used version $\beta A 9$ of HPCJ to compile the Java programs.

Results. Table 1 summarizes the results from our experiments. For each benchmark and code version, we list the measured performance in the appropri-
Table 1 Summary of results from applying our transformations

<table>
<thead>
<tr>
<th>Code Version</th>
<th>DDOT (Mflops)</th>
<th>MATMUL (Mflops)</th>
<th>SHALLOW (Mflops)</th>
<th>BSOM (MCUP/s)</th>
<th>CBC (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C or C++ with Java rules</td>
<td>46.3</td>
<td>33.3</td>
<td>34.3</td>
<td>10.1</td>
<td>1.98</td>
</tr>
<tr>
<td>HPCJ no checks</td>
<td>39.1</td>
<td>33.3</td>
<td>39.2</td>
<td>9.2</td>
<td>0.93</td>
</tr>
<tr>
<td>Transformations (100% Java)</td>
<td>38.5</td>
<td>30.8</td>
<td>39.1</td>
<td>7.6</td>
<td>0.70</td>
</tr>
<tr>
<td>HPCJ with all checks (100% Java)</td>
<td>5.9</td>
<td>2.2</td>
<td>3.1</td>
<td>0.6</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table 2 Comparing the performance of C and Java with transformations

<table>
<thead>
<tr>
<th>Code Version</th>
<th>DDOT (Mflops)</th>
<th>MATMUL (Mflops)</th>
<th>SHALLOW (Mflops)</th>
<th>BSOM (MCUP/s)</th>
<th>CBC (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C with Java rules</td>
<td>46.3</td>
<td>33.3</td>
<td>34.3</td>
<td>10.1</td>
<td>1.98</td>
</tr>
<tr>
<td>Transformations (100% Java)</td>
<td>38.5</td>
<td>30.8</td>
<td>39.1</td>
<td>7.6</td>
<td>0.70</td>
</tr>
<tr>
<td>Percent (Java/C)</td>
<td>83%</td>
<td>92%</td>
<td>114%</td>
<td>75%</td>
<td>55%</td>
</tr>
</tbody>
</table>

ate units. The first row (C or C++ with Java rules) of the table lists the results for the C or C++ version of the benchmarks. The second row (HPCJ no checks) lists the results for the Java version compiled with HPCJ, with all run-time checks disabled. Note that this version is not Java-compliant, since it will not detect any indexing violations that may occur. The third row (Transformations) lists the results for the Java version with our transformations applied. This version is Java-compliant, since all necessary tests are performed. When it is necessary to make private copies of the descriptors of an array (as described in the previous section), the time for copying is included in computing the performance. Finally, the last row (HPCJ with all checks) of the table lists the performance measured for Java compiled with HPCJ, with the run-time checks enabled. Again, this version is Java-compliant.

From Table 1, we observe that HPCJ can produce executable code for Java that is very competitive with code produced for C or C++, if the run-time checks are disabled. However, when the checks are present, the performance of Java code is degraded by as much as 15 times (MATMUL). This indicates that HPCJ already implements many of the optimizations necessary to make Java competitive with C or C++ in performance. In fact, the Java version of SHALLOW achieves higher performance than the C++ version because of better pointer disambiguation in Java than in C++. The executable code produced by HPCJ is hampered only by the need for run-time tests. When our transformations are applied to the code, part of the execution can be performed without any run-time tests. That is the reason why the performance of the transformed code is so much better than that of HPCJ with all tests.

We compare the performance achieved for Java with our transformations to the performance of the corresponding C or C++ code. That comparison is shown in Table 2. The “%” row in that table indicates the fraction of C or C++ performance that the Java code with transformation achieves. We observe that we can achieve between 55 percent and 114 percent of C or C++ code performance with code that is entirely legal Java.

Finally, we compare the performance of code produced with our transformations to the performance of code generated by HPCJ with all run-time checks enabled. Those results are shown in Table 3. The “improvement” row lists the performance ratio between the version with transformations and the version without. We observe that we achieve performance improvements of up to 14 times when we apply our transformations.

Related work

A great deal of work has been done in the area of optimizing bounds checking for arrays. Most of this work has been done in the context of programming languages with no requirements as to the execution
Table 3 Comparing the performance of Java with and without transformations

<table>
<thead>
<tr>
<th>Code Version</th>
<th>DDOT (Mflops)</th>
<th>MATMUL (Mflops)</th>
<th>SHALLOW (Mflops)</th>
<th>BSOM (MCUP/s)</th>
<th>CBC (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformations (100% Java)</td>
<td>38.5</td>
<td>30.8</td>
<td>39.1</td>
<td>7.6</td>
<td>0.70</td>
</tr>
<tr>
<td>HPCJ with all checks</td>
<td>8.9</td>
<td>2.2</td>
<td>3.1</td>
<td>0.6</td>
<td>0.29</td>
</tr>
<tr>
<td>Improvement (100% Java)</td>
<td>6.5 ×</td>
<td>14.0 ×</td>
<td>12.6 ×</td>
<td>12.7 ×</td>
<td>3.7 ×</td>
</tr>
</tbody>
</table>

state at the time the bounds violation occurs. In Java, a violation must generate an exception at a very precise point in the execution of the program. The bounds checking work for Ada confronts a problem similar to the one we face, but takes a less aggressive approach than we do.

There are two main approaches in the literature to optimizing array bounds checks: (1) the use of static data-flow analysis information to determine that a test is unnecessary, and (2) the use of data-flow information and symbolic analysis at compile time to reduce the dynamic number of tests remaining in the program.

Work in the first group uses data-flow information to prove at compile time that an array bounds violation cannot occur at run time and, therefore, that the test for the violation is unnecessary. Using the terms of our discussion, the goal of this work is to identify loops that are safe regions. In contrast, the goal of our work is to transform loops to place the maximum possible number of iterations in safe regions (with constraints on the number of loop versions or regions). Methods of the first group use information about loop and array bounds, and about subscript expressions, to prove that either no access violation will occur in a loop execution or that an access violation might occur. In the former case, no tests are generated. In the latter case, tests are generated as needed. The difficulty of this approach is that the information needed to prove that no violation will occur might not be available at compile time. These techniques would have better results with just-in-time compilation, but the analysis overhead then becomes problematic.

Work in the second group attempts to reduce the dynamic and static number of bounds tests. It also attempts to reduce the overhead induced by a test even if it cannot be eliminated. This is done (1) by hoisting tests out of loops when possible and (2) by also determining that a test is covered by another test and can be eliminated.

The optimization method of Markstein, Cocke, and Markstein is closely related to our computation of l^* and u^* for a single linear reference. It is implemented by three changes to the loop. First, before entering the loop a test is made to determine if a bounds violation occurs on the first iteration. If so, the loop is exited immediately. Second, the loop exit conditions are modified so that the loop terminates before the access violation occurs. Finally, at loop exit, the final iterate value is examined. If it is less than or equal to the upper loop bound in the original program, an access violation occurs, and an exception (or trap, in their terminology) is thrown. The application of the method to the four-point stencil problem of Figure 8 is shown in Figure 26.

To see how the removal of redundant (covered) tests works, consider the naive sequence of tests in Figure 9. If $a[i - 1]$ and $a[i + 1]$ are both legal references, then $a[i]$ is also legal; therefore, the explicit test ifAccessViolation($a[i]$) is redundant. Similarly, considering references indexed by j, if $a[i][j + 1]$ and $a[i][j - 1]$ are both legal, then $a[i + 1][j]$ and $a[i - 1][j]$ are also legal. (Note that we need to know that the array a is rectangular in order to make this statement.) Therefore, the explicit tests ifAccessViolation($a[i + 1][j]$) and ifAccessViolation($a[i - 1][j]$) are redundant. Finally, because b and a are arrays with the same shape, the tests ifAccessViolation($b[i]$, i) and ifAccessViolation($b[i]$, j) are also redundant. After these optimizations we are left with the four explicit tests shown in Figure 27. Note that the remaining tests must be ordered appropriately.

Neither of these optimizations is usable with Java in general because the Java semantics requiring precise exceptions make the hoisting and reordering of tests illegal in many situations. Also, when an access violation exception is caught by a try block in the
loop body, the loop should not be terminated (as would occur when hoisting tests). Nevertheless, the techniques for eliminating redundant tests can be used to optimize the performance of inspectors.

Some instruction set architectures provide special support for index checking, which have been used to speed up bounds checking in various implementations of Java. This is exemplified by the bound instruction in the Intel x86 architecture, used in the jx virtual machine, and the trap instructions of the IBM POWER2 Architecture, used in the IBM Java JIT Compiler. These instructions generate interrupts in the case of violations, which inhibit a wide range of operations.
of compiler optimizations. Optimizations that are inhibit include code motion, reordering, and prescient stores.

Conclusions

We have developed a set of optimizations to reduce the number of run-time tests that need to be performed in Java programs. All of the optimizations work by transforming a loop nest, which implements an iteration space, into code that partitions this iteration space into multiple regions. In some regions, run-time tests are performed, whereas in other regions they are not necessary. The optimizations differ on their level of refinement and practicality. The more-refined methods generate code versions that are more specialized for the different characteristics of regions. They can cause an unacceptable code expansion. The less-refined methods use fewer code versions and merge regions with similar characteristics. They cause a smaller code expansion and are more practical. All methods can create one or more regions that are completely free of run-time tests. In correct array-intensive programs, these regions are expected to perform all or almost all of the computations of a loop nest. In these cases, the less-refined methods can deliver most of the improvements to be gained.

We want to emphasize the importance of creating regions without any possible array bounds and null pointer violations. The benefits of creating these regions are threefold: First, run-time tests can be eliminated from the regions, which results in a direct performance improvement. Second, try blocks that catch bounds exceptions can be removed from the loop versions implementing the safe regions. Third and most importantly, as a consequence of the first two, the resulting regions have simpler code, which enables optimizations that would otherwise be hampered by the explicit run-time tests. In general, the ability to perform optimizations is enhanced by minimizing the extent of violation-free regions. Many forms of operation reordering and parallelization can be performed in these regions.

We implemented a prototype framework for performing our more practical optimization, which only requires two versions of code to be generated. We have measured the effectiveness of this optimization on a suite of array-intensive benchmarks. Our results indicate that Java code can achieve performance that is within 55 to 100 percent or more of the performance of C or C++ code, when the C or C++ code follows Java rules. C or C++ code that follows Java rules implements two-dimensional arrays as a vector of pointers to one-dimensional arrays, and does not perform optimizations that violate Java floating-point semantics.

Our benchmark suite currently consists of various array-intensive programs, including numerical, data-mining, and cryptography kernels. The array operations in these benchmarks are representative of the behavior of many applications. We intend to extend our suite to include graphics and image-processing applications.

In all our discussion we have ignored the use of control-flow analysis. This analysis can be a powerful tool to prove that array references only occur in certain combinations (because of, for example, different paths through the body of a loop), thus reducing some of our code replication. We intend to investigate the usefulness of control-flow analysis as part of our future work.

Finally, our next step is to implement and integrate our transformations into IBM Java-related products. We will work with technical and data-mining application groups to help ensure the success of large-scale, array-intensive Java applications that depend on high performance.

Acknowledgments

The authors wish to thank George Almasi and Rick Lawrence for providing and assisting with the B80M benchmark, David Edelson for providing and assisting with the CBC benchmark, and Yurij Baransky and Murthy Devarakonda for leading the Java performance efforts that initially shed light on this problem.

Appendix A: Computing safe bounds

We describe how to compute the safe bounds v and u of an iteration space $i = l, \ldots, u$ with respect to an array reference. The safe region of the iteration space of i with respect to an array reference $A[f(i)]$ is the set of values of i that make $f(i)$ fall within the bounds of A. The safe region for this operation is defined by

$$\text{lo}(A) \leq f(i) \leq \text{up}(A) \land (l \leq i \leq u) \quad (48)$$

We first consider the case of $f(i)$ monotonically increasing. The iteration space is partitioned into three regions defined as follows:

$$\text{lo}(A) \leq f(i) \leq \text{up}(A) \land (l \leq i \leq u) \quad (48)$$
Using the fact that
\[f(i) < 10(A) \]
the safe region \(\mathcal{R}[2] \) can be defined by
\[\mathcal{R}[2] : i = \max(l, \lfloor f^{-1}(\text{lo}(A)) \rfloor), \ldots, \min(u, \lceil f^{-1}(\text{up}(A)) \rceil) - 1 \]
(52)

No test is required in this region.

Correspondingly, we can define region \(\mathcal{R}[1] \), which requires an \(\text{lb} \) test, by
\[\mathcal{R}[1] : i = l, \ldots, \min(u + 1, \lceil f^{-1}(\text{lo}(A)) \rceil) - 1 \]
(53)

and region \(\mathcal{R}[3] \), which requires a \(\text{ub} \) test, by
\[\mathcal{R}[3] : i = \max(l - 1, \lfloor f^{-1}(\text{up}(A)) \rfloor) + 1, \ldots, u \]
(54)

To combine all three definitions, we can compute
\[\mathcal{R} = \min(u + 1, \max(l, \lceil f^{-1}(\text{lo}(A)) \rceil)) \]
(55)
\[\mathcal{U} = \max(l - 1, \min(u, \lfloor f^{-1}(\text{up}(A)) \rfloor)) \]
(56)

and write
\[\mathcal{R}[1] : i = l, \ldots, \mathcal{R} - 1 \]
(57)
\[\mathcal{R}[2] : i = \mathcal{R}, \ldots, \mathcal{U} \]
(58)
\[\mathcal{R}[3] : i = \mathcal{U} + 1, \ldots, u \]
(59)

As previously discussed, \(\mathcal{T}[1] \), the test for \(\mathcal{R}[1] \), is \(\text{lb} \) test and \(\mathcal{T}[3] \), the test for \(\mathcal{R}[3] \), is \(\text{ub} \) test.

Similarly, if \(f(i) \) is monotonically decreasing we can compute
\[\mathcal{R} = \min(u + 1, \max(l, \lceil f^{-1}(\text{up}(A)) \rceil)) \]
(60)
\[\mathcal{U} = \max(l - 1, \min(u, \lfloor f^{-1}(\text{lo}(A)) \rfloor)) \]
(61)

Using the fact that
\[\lfloor f^{-1}(\text{lo}(A)) \rfloor \leq i \Rightarrow \text{lo}(A) \leq f(i) \]
(62)
\[\lceil f^{-1}(\text{up}(A)) \rceil \geq i \Rightarrow \text{up}(A) \geq f(i) \]
(63)

Note that it is always legal to set either \(\mathcal{T}[1] \) or \(\mathcal{T}[3] \) (or both) to all tests, so as to reduce the number of distinct code versions. We actually use this simplification in some of our methods.

Linear subscripts. In the particular case of a linear subscript function of the form
\[f(i) = ai + b \]
the inverse function \(t(I) \) can be easily computed:
\[f^{-1}(i) = \frac{i - b}{a} \]
(64)

Also, the monotonicity of \(f(i) \) is determined from the value of \(a \): if \(a > 0 \), then \(f(i) \) is monotonically increasing, and if \(a < 0 \), then \(f(i) \) is monotonically decreasing. Note that the values of \(a \) and \(b \) need not be known at compile time, since \(\mathcal{R} \) and \(\mathcal{U} \) can be efficiently computed at run time.

Affine subscripts. Consider the \(d \)-dimensional loop nest
\[\text{for } (i_1 = l_{i_1}; i_1 \leq u_{i_1}; i_1++) \{ \]
\[\text{for } (i_2 = l_{i_2}; i_2 \leq u_{i_2}; i_2++) \{ \]
\[\ldots \]
\[\text{for } (i_d = l_{i_d}; i_d \leq u_{i_d}; i_d++) \{ \]
\[B(i_1, i_2, \ldots, i_d) \}
\[\} \]
\[\ldots \]

and let there be an array reference \(A[f(i_1, i_2, \ldots, i_d)] \) in the body \(B(i_1, i_2, \ldots, i_d) \). Let the subscript be an affine function of the form
\[f(i_1, i_2, \ldots, i_d) = a_1 i_1 + a_2 i_2 + \ldots + a_d i_d + b, \]
where \(i_1, \ldots, i_d \) are the loop index variables and \(a_1, \ldots, a_d, b \) are loop invariants. At the innermost \((i_d) \) loop the values of \(i_1, \ldots, i_{d-1} \) are fixed, and \(f \) can be treated as linear on \(i_d \). Determination of safe bounds for the \(i_1, \ldots, i_{d-1} \) loops can be done using the inspector/executor method described earlier in this paper. Alternatively, these safe bounds can be approximated. Replacing true safe bounds \(\mathcal{R} \) and \(\mathcal{U} \) by approximated safe bounds \(\mathcal{R}' \) and \(\mathcal{U}' \) does not introduce any hazards as long as \(\mathcal{R}' \geq \mathcal{R} \) and \(\mathcal{U}' \leq \mathcal{U} \). Techniques for approximating the iteration subspace of a loop that accesses some range of an affinely sub-
scripted array axis are described in References 23 and 24.

Constant subscripts. For an array reference \(A[f(i)] \) where \(f(i) = k \) (a constant), \(f(i) \) is neither monotonically increasing nor monotonically decreasing. Nevertheless, we can treat this special case by defining

\[
\tilde{x} = l \quad \text{and} \quad \tilde{u} = u \quad \text{if} \quad lo(A) \leq k \leq up(A)
\]
\[
\tilde{x} = l \quad \text{and} \quad \tilde{u} = l-1 \quad \text{if} \quad k > up(A)
\]
\[
\tilde{x} = u + 1 \quad \text{and} \quad \tilde{u} = u \quad \text{if} \quad k < lo(A)
\]

and then computing

\[
\xi = \min(u + 1, \max(l, \tilde{x})) \quad (65)
\]
\[
\eta = \max(l - 1, \min(u, \tilde{u})) \quad (66)
\]

(This last step is necessary to handle empty loops.)

The safe region for reference \(A[k] \) is either the whole iteration space, if \(k \) falls within the bounds of \(A \), or empty otherwise. Only region \(\tilde{\tau}[1] \) is nonempty if \(k \) is too small, and only region \(\tilde{\tau}[3] \) is nonempty if \(k \) is too large. We also define \(\tilde{\tau}[1] = \text{lb test} \) and \(\tilde{\tau}[3] = \text{ub test} \).

Modulo-function subscripts. Another common form of array reference is \(A[f(i)] \) where \(f(i) = g(i) \mod m + ai + b \). In general, this is not a monotonic function. However, we know that the values of \(f(i) \) are within the range described by \(ai + b + j \), for \(i = l, l+1, \ldots, u \) and \(j = 0, 1, \ldots, m-1 \). We define a function \(h(i, j) = ai + b + j \). Let \(h_{\text{max}} \) be the maximum value of \(h(i, j) \) in the domain \(i = l, l+1, \ldots, u \) and \(j = 0, 1, \ldots, m-1 \). Let \(h_{\text{min}} \) be the minimum value of \(h(i, j) \) in the same domain. These extreme values of \(h(i, j) \) can be computed using the techniques described in Reference 25. Then we can define

\[
\tilde{x} = \begin{cases}
 l & \text{if} \ ((lo(A) \leq h_{\text{min}}) \land (up(A) \geq h_{\text{max}})) \\
 u + 1 & \text{otherwise},
\end{cases}
\]
\[
\tilde{u} = u
\]

and compute

\[
\xi = \min(u + 1, \max(l, \tilde{x})) \quad (67)
\]
\[
\eta = \max(l - 1, \min(u, \tilde{u})) \quad (68)
\]

(Again, this is necessary to handle empty loops.) That is, the safe region is the whole iteration space if we can guarantee that \(g(i) \mod m + ai + b \) is always within the bounds of \(A \), or empty otherwise. Region \(\tilde{\tau}[3] \) is always empty, and we make \(\tilde{\tau}[1] = \text{all tests} \) to catch all violations when region \(\tilde{\tau}[1] \) is not empty.

If the subscript function is neither one of the described cases, then the more general inspector/executor method described earlier should be used, if possible. This method also lifts the restriction on function \(f(i) \) being monotonically increasing or decreasing.

Appendix B: Auxiliary transformations

In the fifth section of this paper we used the transformation

\[
\text{for } (i = l; i \leq u; i++)\{ \\
 B(i) \\
\}
\]

becomes

\[
\text{for } (i = l; i \leq u'; i++)\{ \\
 B(\text{test}(i)) \\
\}
\]
\[
\text{for } (i = u'+1; i \leq u; i++)\{ \\
 B(\text{notest}(i)) \\
\}
\]

\[
\text{for } (i = u'; i \leq u; i++)\{ \\
 B(\text{test}(i)) \\
\}
\]

(69)

(70)

to partition the iteration space of a loop into three regions, using two different versions of the loop body: one with tests \((B(\text{test}(i)), \text{which appears twice})\) and one without tests \((B(\text{notest}(i)), \text{which appears once})\).

The following equivalent construct contains only one instance of each loop body version:

\[
\text{for } (\delta = 1; \delta \leq n; \delta++)\{ \\
 \text{for } (i = l(\delta); i \leq u(\delta); i++)\{ \\
 B(\text{test}(i)) \\
 \}
\}
\]
\[
\text{for } (i = u'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{notest}(i)) \\
 \}
\]

\[
\text{for } (i = l'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{test}(i)) \\
 \}
\]

\[
\text{for } (i = u'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{notest}(i)) \\
 \}
\]

\[
\text{for } (i = l'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{test}(i)) \\
 \}
\]

\[
\text{for } (i = u'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{notest}(i)) \\
 \}
\]

\[
\text{for } (i = l'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{test}(i)) \\
 \}
\]

\[
\text{for } (i = u'(\delta); i \leq u'(\delta); i++)\{ \\
 B(\text{notest}(i)) \\
 \}
\]
A driver loop, on index variable δ, iterates over the two instances of the loop, one with the tested body version and the other with the untested version. The bounds $l(\delta)$, $u(\delta)$, $l'(\delta)$, and $u'(\delta)$ for
Figure 30 The four innermost loops transformed

<table>
<thead>
<tr>
<th>$k_1(B_1)$</th>
<th>$k_2(B_2)$</th>
<th>$k_3(B_3)$</th>
<th>$k_4(B_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1(B_1) = k_1(B_1)$</td>
<td>$k_2(B_2) = k_2(B_2)$</td>
<td>$k_3(B_3)$</td>
<td>$k_4(B_4)$</td>
</tr>
</tbody>
</table>

Figure 31 The two middle loops transformed

<table>
<thead>
<tr>
<th>$k_1(B_1)$</th>
<th>$k_2(B_2)$</th>
<th>$k_3(B_3)$</th>
<th>$k_4(B_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1(B_1)$</td>
<td>$k_2(B_2)$</td>
<td>$k_3(B_3)$</td>
<td>$k_4(B_4)$</td>
</tr>
</tbody>
</table>

Each iteration of the driver loop must be properly computed to guarantee that the semantics of the original loop are preserved. The specifications of these bounds as a function of I, u, I^*, and u^* for the most practical choices of n ($n = 2$ and $n = 3$) are shown in Figure 28.

Appendix C: Applying the general method to arbitrary loop nests

As a more complex example of the general method, consider the loop nest of Figure 29. It consists of an outermost loop i. The body of loop i contains two
inner loops \((j_1\) and \(j_2\)) and three segments of straight-line code \((S_1, S_3,\) and \(S_5)\). The body of loop \(j_1\) contains two innermost loops \((k_1\) and \(k_2)\) and a segment of straight-line code \((S_2)\). The body of loop \(j_2\) also contains two innermost loops \((k_3\) and \(k_4)\) and a segment of straight-line code \((S_4)\). The pseudocode for the loop nest is shown in Figure 29A, and a schematic representation is shown in Figure 29B. We use the notation \(i|B\) (curved braces) to represent a loop on index variable \(i\) and body \(B\) that needs bounds testing on array references indexed by \(i\). We use the notation \(i\rangle B\) (square braces) to represent a loop on index variable \(i\) and body \(B\) that does not need testing on array references indexed by \(i\). In the original loop, all array accesses have to be tested for valid indices, and this is represented in the diagram with curved braces for all the loops.

We first apply the transformation to the four innermost loops \((k_1, k_2, k_3,\) and \(k_4)\). Each of these loops is transformed into a sequence of three loops, with the middle one not needing tests on the loop index. These transformations are illustrated in Figure 30.

In the next step, we apply the transformation to the middle loops \(j_1\) and \(j_2\). Again, each of these loops is transformed into a sequence of three loops. The resulting loop nest is shown in Figure 31. For clarity, we represent each of the transformed (expanded) loops, \(j_1\) and \(j_2\), by \(\langle \hat{S}(j_1)\rangle\) and \(\langle \hat{S}(j_2)\rangle\), respectively.

Finally, we complete the operation by applying the transformation to the outermost \(i\) loop. This generates three versions of the \(i\) loop, with the middle one needing no tests on array references indexed by \(i\). The final result is shown in Figure 32. The original loop nest of Figure 29B is transformed into a sequence of three \(i\) loops. Inside the middle \(i\) loop there are regions that do not need any tests. The transformed code will execute efficiently if all or almost all the iterations are executed in these regions.
Appendix D: Applying the compact method to arbitrary loop nests

As a more complex example of the compact method, consider the loop nest of Figure 29. The application of the transformation to the outermost \(i \) loop is illustrated in Figure 33. It generates a driver loop around two instances of the loop nest (as described in Appendix B). In our schematic notation, driver loops are represented by curly braces (\{\}). One of the instances (with the square bracket for \(i \)) does not need any tests on references indexed by \(i \).

The transformation can then be applied to the middle loops \(j_1 \) and \(j_2 \) in the unchecked version of the \(i \) loop. This is illustrated in Figure 34. It results in the creation of a loop nest without any tests for \(i \) or \(j_1 \) and another loop nest without any tests for \(i \) or \(j_2 \).

Finally, we apply the transformation to the innermost \(k_1, k_2, k_3 \), and \(k_4 \) loops, in the regions already without \(i, j_1 \), and \(j_2 \) tests. As illustrated in Figure 35, this creates four regions of code (the bodies of the \(k_1, k_2, k_3 \), and \(k_4 \) loops) that do not need any tests on the array references.

Appendix E: Computing the number of regions when using the compact method

In this appendix we derive an expression for the number of regions a loop nest is partitioned into when using the compact method discussed earlier in this paper. If we apply the compact method to loop \(L_1 \) of the loop nest shown in Equation 42, we partition the iteration space into three regions, according to Equation 41:

\[
L_1(i_1, l_{i_1}, l'_{i_1} - 1, L_2(i_2, l_{i_2}, u_{i_2}, \ldots),
\]

\[
L_d(i_d, l_{i_d}, u_{i_d}, B(i_1, l_{i_2}, \ldots, l_{i_d})) \ldots)
\]

\[
L_1(i_1, l'_{i_1}, u'_{i_1}, L_2(i_2, l_{i_2}, u_{i_2}, \ldots),
\]

\[
L_d(i_d, l_{i_d}, u_{i_d}, B(i_1, l_{i_2}, \ldots, l_{i_d})) \ldots)
\]

\[
L_1(i_1, u'_{i_1} + 1, u_{i_1}, L_2(i_2, l_{i_2}, u_{i_2}, \ldots),
\]

\[
L_d(i_d, l_{i_d}, u_{i_d}, B(i_1, l_{i_2}, \ldots, l_{i_d})) \ldots)
\]

(At this point, we are not concerned with the runtime tests necessary in each region.) Applying the method recursively to the \(L_2 \) loop in the safe region of \(L_1 \) generates \(2 + 3n_1' \) regions, where \(n_1' = u'_{i_1} - \ldots \)
Figure 34 Applying the transformation to the two middle loops

\[I_i + 1 \] is the number of iterations in the safe region of loop \(L_j \) as seen in Figure 36.

In general, applying the compact method to the perfect loop nest of Equation 42 results in

\[
 n = 2 + \sum_{i=1}^{u_i} \left(2 + \sum_{i=1}^{u_i} \left(2 + \sum_{i=1}^{u_i} 3 \right) \right)
\]

(71)

regions. The summations over \(i \) add the number of regions for each value of \(i \) in its safe region. Note that the values of \(I_i \) and \(u_i \) can depend on the values of \(i_1, i_2, \ldots, i_{d-1} \). If the loops are rectangular (i.e., \(I_i \) and \(u_i \) do not depend on the values of other index variables), then the expression for the number of regions simplifies to:

\[
 n = 2 + n_1^i (2 + n_2^i (2 + \cdots (2 + n_{d-1}^i) \cdots))
\]

(72)

or, in more compact form:

\[
 n = 2 + \sum_{i=1}^{d-1} \left(1 + \sum_{i=1}^{d-1} n_i^i \right) + 3 \prod_{i=1}^{d-1} n_i^i
\]

(73)
To make Equation 73 correct for $d = 1$, we define $\prod_{i=1}^{d} n_i = \frac{1}{3}$. The partitioning of a two-dimensional iteration space into regions is shown in Figure 15. Note that the regions have different characteristics as to which run-time checks have to be performed.

Appendix F: Algorithm to optimize the number of regions computed for the restricted method

Figure 37 shows the algorithm for performing the optimization described previously that reduces the number of regions. The main difference, with respect to procedure regions of Figure 16, is when building the safe region for loop i.

In Figure 37, instead of directly applying procedure regions to each iteration of the safe region i, a test is performed using function nochecks. The test verifies whether the safe lower and upper bounds of all loops inside loop i, (loops $i_{j1}, i_{j2}, \ldots, i_d$) are equal to the corresponding full bounds. If that is the case (function nochecks returns true), then a single mul-
tidimensional safe region can be created at this point. If function nochecks returns false, then procedure regions is applied recursively as in Figure 16. We also put guards to generate the regions preceding and succeeding the safe region of loop i_j only if they are non-empty.

*Trademark or registered trademark of International Business Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

Figure 37 Optimized procedure to compute the regions for a loop nest

procedure regions(f_j, $(a_1, a_2, \ldots, a_{j-1})$, $(o_1, o_2, \ldots, o_{j-1})$, d, R, u_k) {
 if ($l_j < l_{j'}$) {
 $u_k = u_k + 1$
 $R[u_k] = ((a_1, \ldots, a_{j-1}, l_j, l_{j+1}, \ldots, l_k), (o_1, \ldots, o_{j-1}, l_{j'} - 1, u_j, \ldots, u_k), \text{test})$
 }
 if ($j == d$) {
 $u_k = u_k + 1$
 $R[u_k] = ((a_1, \ldots, a_{d-1}, l_{d'}, (o_1, \ldots, o_{d-1}, u_{d'}), \text{notest})$
 } else {
 if ($k = l_{j'}$, $k \leq u_{j'}$) $k++$
 $R[u_k] = ((a_1, \ldots, a_{j-1}, l_j, l_{j+1}, \ldots, l_k), (o_1, \ldots, o_{j-1}, u_j, u_{j+1}, \ldots, u_k), \text{notest})$
 }
 if ($u_j > u_{j'}$) {
 $u_k = u_k + 1$
 $R[u_k] = ((a_1, \ldots, a_{j-1}, u_j, l_j, l_{j+1}, \ldots, l_k), (o_1, \ldots, o_{j-1}, u_j, u_{j+1}, \ldots, u_k), \text{test})$
 }
}

boolean function nochecks((l_1, \ldots, l_m), $(l_{i'}, \ldots, l_{i''})$, (o_1, \ldots, o_m), (u_1, \ldots, u_m))
 if ($((l_j = l_{j'}) \land (u_j = u_{j''})) \forall j = 1, \ldots, m$)
 return true
 else
 return false
}

Accepted for publication March 25, 1998.

Samuel P. Midkiff IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (electronic mail: smidkiff@us.ibm.com). Dr. Midkiff received a B.S. degree in computer science in 1983 from the University of Kentucky, and M.S. and Ph.D. degrees in computer science from the University of Illinois at Urbana-Champaign in 1986 and 1992, respectively. While at the University of Illinois, he spent two years in the design and development of the Cedar FORTRAN compiler.
He is a research staff member in the Scalable Parallel Systems Department at the Watson Research Center, and an adjunct assistant professor at the University of Illinois, Urbana-Champaign. Since joining the Research Center in 1992, Dr. Midkiff has worked on the design and development of the IBM XL HPF compiler, the integration of the Distributed Resource Management System (DRMS) with various high-level languages, and the ASCI Blue compiler project. His current research areas are optimizing computationally intensive Java programs, compilation for shared memory multiprocessors, and the analysis of explicitly parallel programs. He has authored or coauthored several refereed journal and conference papers on these subjects.

José E. Moreira IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (electronic mail: jmoreira@us.ibm.com). Dr. Moreira received B.S. degrees in physics and electrical engineering in 1987 and an M.S. degree in electrical engineering in 1990, all from the University of São Paulo, Brazil. He received his Ph.D. degree in electrical engineering from the University of Illinois at Urbana-Champaign in 1995. Dr. Moreira is a research staff member in the Scalable Parallel Systems Department at the Watson Research Center. Since joining IBM in 1995, he has worked on various topics related to the design and execution of parallel applications. His current research activities include performance evaluation and optimization of Java programs, and scheduling mechanisms for the ASCI Blue project. He is coauthor of several papers on task scheduling, performance evaluation, programming languages, and application reconfiguration.

Marc Snir IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (electronic mail: snir@us.ibm.com). Dr. Snir is a senior manager at the Watson Research Center, where he leads research on scalable parallel systems. He and his group developed many of the technologies that led to the IBM SP product, and continue to work on future SP generations. He received a Ph.D. in mathematics from the Hebrew University of Jerusalem in 1979. He worked at New York University on the NYU Ultracomputer project in 1980–1982, and worked at the Hebrew University of Jerusalem from 1982 to 1986, when he joined IBM. Dr. Snir has published close to 100 journal and conference papers on computational complexity, parallel algorithms, parallel architectures, and parallel programming. He has recently coauthored the High Performance FORTRAN and the Message Passing Interface standards. He is on the editorial board of Transactions on Computer Systems and Parallel Processing Letters. He is a member of the IBM Academy of Technology and an IEEE Fellow.