
374 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 23, No. 4, Winter 2009, pp. 374–388
DOI: 10.1177/1094342009347767
© The Author(s), 2009. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav

TOWARD EXASCALE RESILIENCE

Franck Cappello1

Al Geist2

Bill Gropp3

Laxmikant Kale3

Bill Kramer4

Marc Snir3

Abstract

Over the past few years resilience has became a major
issue for high-performance computing (HPC) systems, in
particular in the perspective of large petascale systems
and future exascale systems. These systems will typically
gather from half a million to several millions of central
processing unit (CPU) cores running up to a billion threads.
From the current knowledge and observations of existing
large systems, it is anticipated that exascale systems will
experience various kind of faults many times per day. It is
also anticipated that the current approach for resilience,
which relies on automatic or application level checkpoint/
restart, will not work because the time for checkpointing
and restarting will exceed the mean time to failure of a full
system. This set of projections leaves the community of
fault tolerance for HPC systems with a difficult challenge:
finding new approaches, which are possibly radically dis-
ruptive, to run applications until their normal termination,
despite the essentially unstable nature of exascale sys-
tems. Yet, the community has only five to six years to solve
the problem. This white paper synthesizes the motivations,
observations and research issues considered as determi-
nant of several complimentary experts of HPC in applica-
tions, programming models, distributed systems and
system management.

Key words: exascale, challenge, resilience, fault tolerance,
high-performance computing.

1 From Fault Tolerance to Resilience

Essentially, users of high-performance computing (HPC)
systems want to be able to submit long-running jobs and
have them run to completion in a timely manner. This
demand is even more stringent for users of top-level super-
computers, because these systems are acquired to run jobs
that cannot complete in a timely manner on smaller sys-
tems. However, several obstacles make this demand diffi-
cult to achieve even for today’s supercomputers. Because
of their scale and complexity, current supercomputers have
frequent failures and can run for only a few days before
some part of the system requires rebooting. While tech-
niques for fault tolerance and continuous and tightly-cou-
pled operation exist and are used in some specialized
systems, these techniques have not been scaled to the
level required for supercomputing and are extremely
expensive. The cheaper alternative of maintaining a safe
state on stable disk storage does not work well for large,
tightly-coupled applications and results in the loss of a
significant amount of computed work whenever a failure
occurs.

The current response to faults in existing systems con-
sists in restarting the execution of the application and the
pieces of its software (SW) environment that have been
affected by faults. To avoid restarting from the beginning,
users may checkpoint the execution of their applications
periodically and restart them from a safe checkpoint after
faults have occurred. Note that in some situations, several
pieces of the SW environment have to be restarted as well.
However, checkpointing and restarting has a cost: it takes
time and energy. Some projections estimate that, with the
current technique, the time to checkpoint and restart may
exceed the mean time to interrupt of top supercomputers
before 2015. This not only means that a computation will
make little progress; it also means that fault-handling
protocols have to handle multiple errors – current solu-
tions are often designed to handle single errors. Moreover,
the current approach for fault tolerance is to apply the
same technique (checkpoint/restart) to all types of faults
(permanent node crash, detected transient errors, network
errors and file system failures) and for the whole duration
of the execution. However, not all faults require the gen-
eral and expensive checkpoint/restart approach. As an
example, detected transient hardware (HW) faults (soft

1 INRIA, LABORATOIRE EN RECHERCHE INFORMATIQUE,
FRANCE.
(CAPPELLO@ILLINOIS.EDU)
2 OAK RIDGE NATIONAL LABORATORY, TN, USA.
3 DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN, USA.
4 NERSC, LAWRENCE BERKELEY NATIONAL LABORATORY,
IL, USA.

375TOWARD EXASCALE RESILIENC

errors) may be managed in a more efficient way. Some
recent work (Glosli et al. 2007) on BlueGene/L suggests
that simple, dedicated approaches (in terms of time and
energy) could solve specific, well-understood faults (errors
in the L1 cache in the case of BlueGene/L).

If we observe the situation more closely, we see that
none of the higher layers of the SW stack have been specif-
ically designed to cope with faults. Only a few SW compo-
nents, such as some message-passing interface (MPI)
libraries, have been partially retrofitted to tolerate some
faults. Moreover, there is no communication and coordina-
tion between SW layers and SW components within every
layer for fault detection and management. An example of
this lack is the MPI environment itself; even if some MPI
libraries have been adapted to tolerate failures, their asso-
ciated runtime environment is not fault tolerant, and
requires a restart from scratch at every fault. Another
example is the lack of coordination regarding fault detec-
tion and management between an application and the
libraries used by the application. As a consequence, even
if applications themselves were designed to resist faults,
most parts of their SW environment would not let the
execution survive the faults.

Since exascale supercomputers, which are expected by
2018, will exhibit greater complexity and many more
faults than today’s supercomputers, one can gauge the
challenge that the community in HPC is facing; it is not
only adapting or optimizing well-known and proven tech-
niques, but it is also making the full SW stack fault toler-
ant and/or fault aware and ensuring that fault detection and
management is consistent across the whole SW stack.
The problem of building reliable systems out of unreliable
components did preoccupy the first generation of comput-
ing system designers – see, e.g. Von Neuman, 1956, as
first generation computers were very failure prone. The
succeeding generations of system designers did succeed in
building fairly reliable systems; application visible faults
became rare events so that all faults could be treated in the
same way. The inherent instability of exascale systems,
the envisioned diversity of their faults and the limitations
of generic “one fits all” fault tolerance approaches will
force the community to reconsider the fault tolerance
problem as a whole, develop resilient SW and provide a
set of dedicated solutions in addition to (or instead of) a
general purpose one.

2 A Rapid Tour of Existing Technologies
and Open Issues at Petascale

All current production quality technologies for fault tol-
erance in HPC systems and applications are designed for
fail stop errors (node, operating system (OS) or process
crash, network disconnections, etc.) and rely on the
classic checkpoint/restart approach (automatic or appli-

cation level) Most of the solutions focus on applications
using MPI, albeit there are some exceptions, such as for
Charm++. Almost all store the application state on remote
storage, generally a parallel file system, through I/O nodes.
Two recent exceptions are the Charm++, in a memory-dis-
tributed checkpoint scheme, and the Scalable Checkpoint/
Restart (SCR) library used at Lawrence Livermore
National Laboratory (LLNL) that tolerates a single node
failure following the diskless checkpointing approach.

Existing technologies for checkpointing include Berke-
ley Lab Checkpoint/Restart (BLCR) (at the OS level)
(BLCR, 2009), the application level checkpointing
environment, the SCR library (SCR, 2009) developed at
Livermore, the Cornell Checkpoint pre-Compiler (C3)
(Bronevetsky et al. 2003) and virtual machine checkpoint-
ing with XEN (http://www.xen.org). Other SW environ-
ments have been used in the past but are no longer used in
large centers: Libckpt (OS level improved by programmer
annotations) (Libckpt, 2009) and the Condor stand alone
checkpoint library (OS level) (CSCL, 2009). The current
most popular environment (BLCR) does not provide incre-
mental checkpointing (at the time we are writing this arti-
cle) and does not provide annotations that would allow the
programmer a fine control of the checkpoint process. In
addition to these non-commercial technologies, some
vendors, such as IBM and SUN, have developed their
own sophisticated checkpoint/restart technologies.

At the parallel computer level, fault tolerant environ-
ments mostly concern the MPI. Several environments
have been designed or adapted to make MPI applications
fault tolerant: fault-tolerant message passing interface
(FTMPI) (FT-MPI, 2009), Open MPI (OpenMPI, 2009),
MPICH-V (Bosilca et al.2002), local area multicomputer
message-passing interface (LAM-MPI) (LAM/MPI, 2009),
MPVAPICH (MVAPICH, 2009), Los Alamos message
passing interface (LA-MPI) and adaptive messagepassing
interface (AMPI). (Bosilca et al. 2002), local area multi-
computer message-passing interface (LAM-MPI) (Indi-
ana) (LAM/MPI, 2009), MPVAPICH (Ohio) (MVAPICH,
2009), Los Alamos message passing interface (LA-MPI)
(Los Alamos) and adaptive message-passing interface
(AMPI) (UIUC). These environments differ in the type of
faults they are managing, their design, fault-tolerance
approach and the fault-tolerance protocol they are using.
Other environments, such as Charm++, provide fault-tol-
erance features. On the other hand, none of the parti-
tioned global address space (PGAS) environments are
fault tolerant. Addressing this lack can be considered as
an important priority.

Since, in the past, most of the development efforts on
fault tolerance have been addressing fail stop errors with
classic checkpoint/restart, many issues remain open con-
cerning the management of other types of faults and other
fault tolerance approaches that have not been studied in

376 COMPUTING APPLICATIONS

enough depth. As a matter of fact, many fundamental
parameters of fault tolerance for HPC systems and paral-
lel applications are not well understood. In the following
paragraphs we give five examples of problems requiring
more research even at the petascale.

The first example is related to remote access system
Reliability, Availability, Serviceability (RAS) analysis.
Several analyses have been made concerning the root
cause behind failures (Lu, 2005; Oliner and Stearley,
2007; Schroeder and Gibson, 2007). The three most recent
publications in this domain reach contradictory conclu-
sions concerning the respective responsibility of SW and
HW. This is not really surprising since these three studies
analyze three different sets of systems in three different
locations. This limited comprehension of root causes
makes fault-effect avoidance (the capability to avoid the
effects of faults) difficult. Without a good understanding
of root causes, it seems illusory to design and validate
fault-prediction mechanisms. Without a good fault-predic-
tion system, research on proactive actions is almost use-
less. In addition, even if at some point we are capable of
predicting accurately errors, we still have to find: (1)
acceptable solutions to handle false negatives and (2)
how to handle predicted SW errors (process or virtual
machine migration is not a response for SW errors).

Another example is “silent errors”. Silent errors are
simply faults that never get detected, or get detected long
after they have generated erroneous results. They can be
transient as in the case of HW soft errors. Transient flip-
ping of bits happens continuously in the memory of the
largest systems in the world, but error correction code
(ECC) memory automatically detects and corrects these
faults. Silent HW errors arise when any part of the mem-
ory is not protected by ECC, in data paths, processor reg-
isters or units that are not protected, or when multiple
memory faults cancel each other out preventing the detec-
tion of the faults. Silent errors are not limited to transient
effects; one can have permanent undetected HW faults that
are silent. Often they are only discovered when an applica-
tion running on this HW gives a clearly wrong answer,
fails to complete, or completes much more slowly than
usual. By then it may be too late for the application to
recover. Silent errors are not limited to HW faults. There
have been several cases where SW or firmware code has
had bugs in it that only manifest in rare cases, for exam-
ple, router-chip SW that changes the bits in one message
out of every billion. The key characteristic of silent errors
is that they are undetected; therefore, there is no opportu-
nity for an application to adapt or recover from the fault
at the moment when it hits the system. If the rate of silent
errors is too high, then a user must worry that the results
of his simulation are incorrect. Designing mechanisms to
tolerate silent errors depend on a better comprehension of
these errors. Very few results are available about the quan-

titative evaluation of their likelihood on a large-scale dur-
ing execution.

While large parallel computers often have HW mecha-
nisms for fault detection in specific subsystems (e.g. the
interconnection network), they do not usually provide an
integrated approach that ensures fault tolerance at the sys-
tem level. The problem is compounded by the use of com-
modity components designed for cost-sensitive applications
that may tolerate high failure rates and frequent silent errors
(e.g. gaming). Modern data centers (such as at Google) are
designed to be resilient in order to provide continuous serv-
ice; such a design is facilitated by the nature of the work-
loads they support (embarrassingly parallel, or very coarse
grain). Parallel computers (whatever their size) by the
nature of their workloads (fine grain parallelism) make
such a design harder. However, there are many opportuni-
ties of HW supports with solid state drive (SSD) devices,
specific networks, Transactional Memory, HW diagnostics,
fault detectors, etc. There is a need to understand what kind
of HW could be added and how to integrate it in the systems
with reasonable cost and energy consumption.

We have already mentioned the lack of coordination
between SW layers with regards to errors and fault man-
agement. Currently, when a SW layer or component
detects a fault it does not inform the other parts of the SW
running on the system in a consistent manner. As a conse-
quence, fault-handling actions taken by this SW compo-
nent are hidden to the rest of the system. Imagine that two
SW components detect faults with the same root cause;
they may take contradictory actions because of this lack of
coordination. Likewise, if a SW layer detects an erroneous
condition, it often has insufficient or incorrect information
to determine the best response. In an ideal word, if a SW
component detects a potential error, then the information
should propagate to other components that may be
affected by the error or that control resources that may be
responsible for the error. Some SW components may also
contribute to the decision making process, deciding on a
plan for recovery, reconfiguration or adaptation. All SW
components should then conform to this decision and
take corresponding actions. There is already an attempt
to develop a coordination system for SW called coordi-
nated and improved fault tolerance (CIFT) (CIFT, 2009).
However, few components are available and there is cer-
tainly a need to put more efforts into that topic.

One suggested way to cope with silent errors and a con-
tinuous stream of faults is to design fault-oblivious algo-
rithms. These algorithms should demonstrate resilience
and correctness in the face of faults (Engelman and Geist,
2005). Very little is known today about how to create such
algorithms, except in the simplest cases that are nearly
embarrassingly parallel or for problems that have simple
checkers (Blum and Kannan, 1995). An example of ques-
tions that should be answered is the following: to what

377TOWARD EXASCALE RESILIENC

extent are existing numerical methods, such as asynchro-
nous iterative methods and chaotic relaxation approaches,
resistant to information losses due to communication cor-
ruption, temporary disconnection, transient HW failures or
damaged SW presenting a Byzantine behavior? Address-
ing this challenge does not rely only on application devel-
opers; the system SW also needs to cope with a continuous
stream of faults and being in a constant state of reconfigu-
ration of the system.

As discussed in the previous section, the fault-tolerance
approaches used in production are supposed to be generic,
managing all fault cases in the same global way whatever
are the faults, the application and the execution phase
within the application. Adaptive data protection may help
to provide a more efficient approach by allowing specific
responses according to the fault context. For example, not
all data need to be saved at every checkpoint. This observa-
tion is the root of the “memory exclusion” mechanism pro-
posed by Plank et al. (1999). Advanced techniques such as
“compiler-assisted memory exclusion” help programmers
to identify explicitly, in the code of the application, the
data to be removed from the checkpoint. Another obser-
vation is that the current procedure for checkpoint/
restart, which essentially relies on copying useful memory
content and storing it on a stable storage (and vice versa
for restart), may not be the most efficient/rapid way of
saving and reconstructing the data. Programmers are in the
best position to know how to save and restore quickly the
critical data of their application, but they cannot use such
adaptive data protection other than by doing it manually.
More generally, there is a need to investigate the notion of
“correctness models”. The programmer may provide infor-
mation, in the program annotations, about ways to protect
or check key data, computations or communications. The
programmer may provide assertions that help improve
anomaly detection. The system may use such annotations
and assertions adaptively. This is similar to adaptive
resource management in a run-time system: The program-
mer annotates the program to provide information on its
properties; the run-time uses this information, and infor-
mation on the state of the system, to allocate resources. One
can think of this as a “fault-tolerance” budget that is man-
aged by a “fault-tolerance manager”, based on information
on the computation provided by the user, and information
on the system, collected from various sensors.

3 Issues in Exascale Systems

There is a broad consensus in the community about the
fact that exascale systems will be hit by errors/faults
much more frequently than petascale systems. There are
two main reasons behind this belief: (1) an exascale system
will be composed of many more components than petascale
systems and (2) the mean time to failure (MTTF) of each

of these components will not improve enough to com-
pensate for (1).

Current projections of exascale systems are consider-
ing that a single supercomputer of this category will fea-
ture millions of central processing unit (CPU) cores and
may have to run up to a billion threads. If we look to the
past ten years, the performance increase of the best
supercomputers in the Top500 resulted from an increase
in CPU clock frequency, an increase in the number of
transistors per chip and an increase in the number of
sockets in a machine. Clock frequency has flattened in the
last few years, so that the increase in the number of sockets
can be expected to accelerate. As a consequence, the
number of components in an exascale system will be much
higher than that of petascale systems (100,000 is the
order of magnitude of the number of sockets we may
see in exascale systems). The reliability of individual
components is not likely to improve significantly in the
near future. Indeed, the reliability of the components in
HPC systems has not improved and may have degraded in
the last 10 years. There are several reasons behind this
observation: (1) the complexity and sensitivity of compo-
nents get higher over time (more transistors, smaller tran-
sistors, lower voltage, more manufacturing variance); (2)
manufacturers increase HW redundancy and error checking
in their component to compensate for (1); (3) manufactur-
ers are targeting a fixed-reliability level for components as
most sold computers consist of one or few complex compo-
nents and, as the lifetime of computing systems is measured
in years, there is no meaningful market incentive to increase
component reliability. With more components of similar
reliability, exascale systems will experience more errors-
faults-failures than petascale systems.

Even if there is not yet a consensus on this aspect,
there is a suspicion that SW errors will dominate in exas-
cale systems. The rationale behind this belief is that (1)
the SW stack run on every node of a parallel computer is
already very complex (current estimations of the number
of code lines in such SW is several millions) and (2) this
SW stack has not been designed or tested with high avail-
ability and resilience in mind. As a consequence most of
the SW parts: (a) are not restartable or replaceable with-
out impacting the other SW parts, (b) do not integrate
enough fault-error detectors, and (c) have not been tested,
validated or formally verified at the (much more expen-
sive) level used for critical SW.

The community has translated these projections and sus-
picions into the following statement: faults/errors/failures
will not be rare events anymore and should be considered
as normal events. In other words, exascale systems will
need to resist a continuous stream of faults/errors/failures.

The community, based on its past experiences and the
observations of the current largest systems, envisions the
following major issues:

378 COMPUTING APPLICATIONS

1. Some faults will not be detected (silent errors).
Both HW and SW silent errors are likely to happen.

2. Detected but uncorrectable transient errors may
represent a large fraction of errors. The assump-
tion is that with the increase of the integration
level, the phenomena causing transient errors will
have a much wider impact on the affected compo-
nents, despite the redundancy mechanisms added
by the manufacturers.

3. Correctable errors will increase the HW jitter due
to the background error recovery activities (e.g.
memory scrubbing and error handling), which
will become significant.

4. Long-running jobs may be hit by HW and SW
faults (of multiple types) several times before com-
pletion.

5. Current designs and practices of global, synchro-
nized checkpoint/restart (on remote file systems)
will not work anymore.

The community concurs that research for more reliability
and robustness is critical at every layer between the
hardware and the end user. Considering the existing
technologies, the state of the art in research and the fore-
casted faults/errors characteristics of exascale systems,
new resilience paradigms are required.

4 First Set of Recommendations:
Improving/Facilitating Exchanges and
Sharing in the Community

The resilience topic has several characteristics that dis-
tinguish it from the other research topics related to exas-
cale systems with regards to the involved community.

Firstly, the community is very large and involves: (A)
computer scientists whose main field is fault tolerance
and resilience, (B) computer scientists whose main field
is in other domains, but with some experience or specific
knowledge on fault tolerance and resilience (people work-
ing on programming models, file systems, libraries, etc.),
(C) application developers, (D) researchers and devel-
opers in numerical algorithms, (E) system managers
and experts in HPC centers, (F) users of large-scale long-
running applications and (G) SW and HW vendors.

Secondly, the community is spread all over the world
but not organized at the international level. The skills of
top-level research teams are mostly complementary;
however, there are some overlaps, such as in the domains
of fault-tolerant MPIs or event log analysis. An important
observation is that no single team contains all the required
skills to address the critical resilience issues listed in the
following paragraphs.

All the participants of the HPC domain involved in
resilience come with their own culture and perception of

faults, errors, failures, their origins and consequences.
The research methodology is not well established and
shared across the HPC community. Simple examples are:
(1) the lack of common metrics and benchmarks to stress
fault tolerance or resilience approaches, (2) the lack of
standardization and common structure for event logging
and analysis and (3) the lack of an experimental environ-
ment.

As one can imagine, event logs are very important
sources of information to understand the root cause
behind failures. However, there is no existing standard
on how system managers enter events in the logs that
have not been reported by the automatic detection sys-
tems and automated systems do not follow standard for-
mats. Moreover, it happens that the human-entered
information is not consistent with that generated by the
automatic detection systems. This raises significant diffi-
culties when event logs have to be filtered, analyzed and
mined to determine root causes.

Another remarkable element, which is a good example
of problems raised when the coordination is weak, is the
lack of common definition on some critical issues. Take
as an example the definition of “soft errors”. This term is
becoming widely used to express the kind of faults that
are expected to be prevalent (or at least very frequent) in
exascale systems. The definition of this term varies. In
some communities “soft errors” means transient physical
faults, while in the general definition, published in one
reference paper on dependability, “errors produced by
intermittent faults are usually termed soft errors” and
“elusive development faults and transient physical faults
lead to both classes being grouped together as intermit-
tent faults.” (Avizienis et al. 2004). The last definition
clearly mentions SW as a potential source of “soft
errors”, which is not the case for the former definition.
“Examples are memory bloating and leaking, untermi-
nated threads, unreleased file-locks, data corruption, stor-
age space fragmentation, and accumulation of round-off
errors” (Avizienis et al. 2004). Obviously, sharing com-
mon definitions on key issues is essential as a very first
step of community coordination.

The notion of intermittent or transient errors itself is
not well established in the HPC domain. Obviously tran-
sient or intermittent errors may be managed in different
ways than permanent errors. What are the existing crite-
ria and procedures to qualify an error in HPC systems
as intermittent or transient? Who is responsible for
making this distinction: the system manager or some
algorithms analyzing the event logs? The answers to
these questions are still open in our community and far
from being shared.

As a consequence, there is a need for more exchanges
and sharing between the members of the resilience com-
munity at the international scale.

379TOWARD EXASCALE RESILIENC

The first element to address this situation would be to
establish a conference on resilience in HPC. As a matter of
fact, there is no conference in HPC dedicated to the resil-
ience topic and vice versa. One can question the need for
such a dedicated conference, since fault tolerance and
resilience are well-identified research domains having
their own top-level general-purpose conferences. How-
ever, although fault tolerance and resilience in general are
wide research domains and some of their application
domains (distributed systems, sensor networks, databases,
HPC, etc.) have commonalities in research topics, several
research questions do not overlap. For example, (1) self-
stabilizing algorithms are key mechanisms of sensors net-
works but have not been used so far in HPC environments,
(2) replication is the major approach for fault tolerance in
all applications domains except HPC and (3) diskless
checkpointing or application-based fault tolerance are con-
sidered as interesting mechanisms only in HPC and are dis-
regarded by other domains. Moreover, we consider that the
spectrum of questions related to resilience in HPC systems
is large enough to motivate the organization of an annual
even gathering the community. The format and organiza-
tion of such events remains to be defined.

Another important element is to improve the informa-
tion and methodology sharing across the community. The
fact that event logs of the most recent large-scale super-
computer facilities are not easily accessible by a large
research community is a major impediment to progress in
the domain of fault, error and failure analysis. Event log
anonymization has been considered as a possible solution
to this problem but remains to be investigated and applied.
In terms of methodology, there is no consensus in the com-
munity on “what, how and where” to measure and test
fault tolerance/resilience techniques for HPC. Several
metrics have been defined recently for characterizing a
full system, such as “survivability” and “performability”
(Nagaraja et al. 2003), but they are not widely used. Other
metrics could be of interest, such as the “reaction time” for
the different mechanisms used in a fault-tolerant/resilient
system and “resistance factors” to express how well a
system resists high fault frequencies or high numbers of
simultaneous faults.

5 Research Issues Considered as
Important

The community has identified four main research topics
considered as determinant to ensure the correct termina-
tion of parallel executions on exascale systems:

1. Fault detection, propagation and understanding.
2. Fault recovery.
3. Fault-oblivious algorithms.
4. Stress testing proposed fault-tolerance solutions.

5.1 Fault Detection and Understanding

Fault detection and understanding covers three sub-prob-
lems: improving fault detection and layer coordination,
understanding faults and silent errors and improving situ-
ational awareness.

5.1.1 Fault Detection and Layer Coordination There
are only a few ways to deal with undetected faults (silent
errors): (1) ignore them, assuming that they will stay
marginal and that they will not degrade the result quality
to an unacceptable level, (2) develop fault-oblivious
algorithms that can resist by construction to a high level
of undetected errors, (3) use some form of redundancy and
on-line checking or (4) store, transfer and compute on an
encoded version of the data (such as with the algorithm-
based fault tolerance (ABFT) technique). The first is unac-
ceptable as undetected faults are too frequent. The second
will require years, if not decades, of efforts to transform
existing algorithms and methods to resilient versions
resistant to a large variety of faults and errors. The third
is feared to be too expensive in terms of overhead. The
fourth is currently mostly limited to linear algebra opera-
tions. Thus, considering the risk of not managing unde-
tected errors and the cost for their management, the
community considers that more SW and HW detectors
should be integrated in HPC systems to reduce the occur-
rence of undetected errors.

Not only should more errors be detected, but also a
higher error-detection resolution should be used to deter-
mine initial/likely SW component failure, for both sys-
tem-wide and non-system-wide SW caused failures.

As discussed in previous sections, there is a need to
coordinate fault-error detection, propagation and manage-
ment across the SW layers. To progress toward this objec-
tive, there is an immediate need to improve the propagation
of error conditions through SW layers and HW compo-
nents. At National Energy Research Scientific Comput-
ing Center (NERSC), about a year was spent trying to get
correct error encodings coming up through the SW lay-
ers for a recent HPC system (Kramer, 2008). Efforts for
correct propagation were required in almost every SW
layer.

5.1.2 Understanding Faults and Silent Errors Detec-
ting errors/faults is a necessary objective to trigger fault-
tolerance mechanisms and let them implement correc-
tions. Of equal importance are the finding of the root
causes and the analysis of the causalities chain that pro-
voked the detected errors. Finding root causes helps to
apply specific corrections in order to avoid future occur-
rences of the error. Since we envision that SW will be
responsible for a large fraction of the errors, there is a
need for a better analysis of root cause behaviors across

380 COMPUTING APPLICATIONS

SW errors. For example, we need to verify if the informal
root cause analysis in some bug reports that indicate a
large portion of SW errors are caused by SW that is in error
recovery or exception handling that is in itself correct. Ana-
lyzing the causality chain helps to understand how to stop
the “contamination” of a root error by the introduction of
confinement mechanisms. Several researches have been
conducted on this topic. However, log analysis is still a
very complex issue for several reasons: lack of standardi-
zation, lack of consistence in the log files and lack of
research in log analysis engines.

The Petascale System Integration Workshop (Kramer
et al. 2007), organized a couple of years ago, has already
identified the format standardization for all logs as
important. Another important objective would be a stand-
ard for error encoding. Obviously, standardization is fun-
damental to efficient log analysis of log files coming from
different sources and also to limit the development effort
and concentrate most of it on the analysis engine and not
on translators. The consistent integration between human-
entered event logging and automated information is
regarded as another significant issue. When analyzing the
error logs for five years at NERSC, it took about a person
year to make all the operational and repair logs consistent
with the automated log (PDSI, 2009). Whatever the
standardization level and the consistency of the logs, the
challenge is to create the analysis engines. Finding root
causes requires browsing huge amounts of information
and using filters to detect redundancies. Several recent
papers have presented analysis results for different super-
computers. Since their conclusions are significantly diverg-
ing, it is important to understand the sources of this
variation. Clearly, there is a need for greater efforts and col-
laborations in this domain. The data-mining community
could probably help in this research.

Despite the existing error-detection system, some
errors are not detected and reported. These silent errors
are not well understood in their source, consequences and
quantification. Silent errors are suspected and observed
by their effects, for example when an application gives
results considered as too divergent from the expected
ones, fails to complete without detected errors or com-
pletes much more slowly than usual. Designing mecha-
nisms to tolerate these errors depends on a better
comprehension of the errors, especially when they come
from the HW. However, we are not aware of any quanti-
tative evaluation of their likelihood on a large scale dur-
ing the application executions. The question here is: do
we really need to develop specific mechanisms for these
errors if they only affect a very small fraction of the exe-
cutions? To give an answer to this question there is a
need to determine if existing error occurrence models are
enough to estimate quantitatively the likelihood of these
errors for exascale systems. If the models are not accu-

rate enough, we will need to use or create measurement
platforms.

Understanding the sensitivity of HPC usage scenarios,
applications and algorithms to faults, errors and failures
is as important as understanding the errors and their root
causes (faults)1. In the HPC context the impact of faults
and errors could be a significant slowdown of the appli-
cation, a crash or an incorrect result. If the fault-tolerance
mechanism reacts to faults and errors without considering
the context of the execution, the result could be undesira-
ble. For example, it was observed that some systems spend
so much time in error recovery that performance becomes
unpredictable. As a matter of fact, the impact of a failure in
HPC applications varies and how to recover from errors
depends on the context. Some HPC users launch large sets
of small- or medium-scale simulations following a param-
eter sweep-like method. If one of the simulations fails, the
user can decide whether or not it is worthwhile re-launch-
ing it. In this scenario, the consequence of a failure is less
catastrophic than in a scenario where a single large simula-
tion crashes or gives an incorrect result after tens hours of
execution. Some applications written following the mas-
ter–worker paradigm do not need, in theory, to be fully
restarted if an error or a fault happens in one worker
node: only the failed process(es) have to be re-launched.
Some algorithms based on chaotic relaxation seem to
present good resilience qualities and can tolerate a cer-
tain amount of information loss, although these algo-
rithms may not perform as well as less resilient ones. In a
distributed system, the self-stabilizing algorithms can fol-
low a forward recovery approach that can even tolerate
Byzantine attacks. Such algorithms do not need an “exter-
nal” correction of the errors to return eventually to a cor-
rect state. Thus, the response to a failure or an error
depends on the context and the specific sensitivity to faults
of the usage scenarios, applications and algorithms.
However, even if this dependency on the context seems
clear, there is no existing study evaluating this sensitivity
and the minimal response for a large variety of scenarios,
applications and algorithms.

In particular, little is known about the sensitivity of the
algorithms to silent errors. A study published in SC 2004
could be a good starting point (Lu and Reed, 2004).
Using SW fault injection in a non-protected HW (mem-
ory without ECC, no protocol checksum on communica-
tions, etc.), the authors have simulated single-bit memory
errors, register file upsets and MPI message payload cor-
ruption and measured the consequences for a suite of
MPI applications. These experiments showed that most
applications are very sensitive to even single errors. The
errors were often undetected (thus silent), leading to
incorrect outputs. This study needs to be continued and
expanded because it considered only three applications at
a small scale (less than 200 processes) and only silent

381TOWARD EXASCALE RESILIENC

HW faults. Going further in this direction, there is a need
to understand the fundamental origin of the algorithm
sensitivity to silent errors.

5.1.3 Situational Awareness In some cases, a major
error is reported too late to the system manager for cor-
rective actions, despite the fact that several minor errors
have occurred and could have been reported. The prob-
lem comes from the automatic systems that silently cor-
rect some errors. An example is disk controllers that are
very good at correcting errors and rebuilding data. How-
ever, disk controllers rarely inform the system manager
about error detection and repair. In some situations, the
repetition of minor errors eventually leads to major
defects that controllers cannot fix. The system manager is
then informed, but too late to take corrective action, such
as replacing the failing device.

Situational awareness2 supposes excellent filtering
systems that warn the system manager only about relevant
issues, but provide sufficient information in a timely man-
ner for the system manger to take appropriate action. Situ-
ation awareness (SA) is not a new problem for domains
such as air traffic control, power plant operations, emer-
gency response, military command and control and medi-
cine. This is a major concern in these domains and many
efforts have been devoted to studying what information
is needed by human managers so, when automated sys-
tems fail, humans can step in and make effective judg-
ments. There is a need to investigate this area more and
probably learning from lessons in the mentioned domains
using situational awareness.

5.2 Fault Recovery

5.2.1 Non-masking Approaches The principle of
non-masking approaches is to report faults and errors to
the applications or the users and let them: (a) decide on
which strategy to adopt according to the faults and errors
and have the runtime environment or the OS manage the
recovery process (FT-MPI) or (b) actually organize most
of the recovery process with minimal or no intervention
of the runtime environment or the OS (application level
checkpoint/restart and ABFT).

The non-masking approach was the original one for
most applications and users. Most large-scale, long-last-
ing applications have some dedicated portion of the code
devoted to checkpoint and restart. Checkpoint/restart in
these codes has several objectives: it can be used to debug
the application, to pause its execution to release the com-
puting resources to other applications and for fault toler-
ance. In such applications, the code is not directly
managing all aspects of fault tolerance. In particular, there
is generally no mechanism for fault detection. When the
environment (the batch system for example) reports a fail-

ure (generally the crash of the application), the user is
informed and has the option to resubmit the application
asking to restart its execution from the latest valid check-
point. Saving the state of the application is the responsi-
bility of the programmer who has to: (1) decide what data
to save on a stable storage (local disk or remote file sys-
tem), (2) make sure that the states of all participating
processes are consistent before saving the data and (3)
rearrange the application code to make the application
restartable from the saved data. An application-level
checkpoint/restart library can help the application pro-
grammer.

Application level checkpoint/restart has several known
limitations that have not been really quantified by a thor-
ough analysis. Firstly, since the programmer puts the
checkpoint code directly into the application, there is no
easy way to externally control the checkpoint interval.
Indeed, without external control, the checkpoint interval
depends directly on the performance of the processor and
not on its estimated reliability. There is a way to alleviate
this issue, under some conditions, by intercepting the
checkpoint requests made by the application and have a
control environment deciding whether or not to check-
point. The second problem is the size of the checkpoint
generated by this approach. It is suspected that the pro-
grammers save more data than needed because they can-
not always easily track the modifications of the data
structures between consecutive checkpoints. However,
too few quantitative results are available on the overhead
caused by a non-optimal checkpoint interval and on the
size of the data saved during the application that is not
required for restart. Furthermore, many third-party SW
packages do not have checkpoint/restart options. An in-
depth study of this approach would help understanding of
its real limits.

One promising non-masking approach is ABFT (Huang
and Abraham, 1984). It is classified as a non-masking
approach because the programmers are required to adapt
their algorithms to integrate ABFT. The ABFT approach
consists of computing on data encoded with some level of
redundancy. If an error or a fault occurs during the com-
putation and if the encoded results have enough redun-
dancy, it remains possible to reconstruct the missing part
of the result. ABFT was proposed for systolic arrays. It is
based on a mathematical property of the algorithm: the
decoded results correspond to the algorithm applied on
the non-encoded input parameters. In other words, the
coded result stays consistent with the encoded input
parameters thanks to the consistence preservation prop-
erty of the algorithm. ABFT has several limitations in
practice: (1) it works for linear algebra and fast Fourier
transform (FFT), but to our knowledge, the question of
its applicability to other domains stays open. (2) ABFT
was designed for off-line detection and correction. Since

382 COMPUTING APPLICATIONS

execution in exascale systems is supposed to be hit by
several faults before its termination, there is a need for
on-line error detection and correction. On-line ABFT
(Chen, 2008) consists in stopping the execution of the
algorithm at some point before the termination, detecting
and potentially correcting errors on the data sets. A recent
paper demonstrates that the consistence conservation prop-
erty is not respected during the computation for several
matrix products algorithms. As a consequence these algo-
rithms cannot be used for on-line ABFT. (3) To detect
errors on the data sets, ABFT needs global reduction
operations. Error correction requires solving a system of
linear equations. Reduction and linear system solving
involving billions of threads is probably not feasible in
an efficient manner. (4) Although some recent work
demonstrates that the numerical stability is not harmed
in some very specific cases, the general understanding
on the impact of ABFT on the numerical stability
remains to be investigated. Thus, to understand the
applicability of ABFT to future exascale computers and
find solutions to its current limitations requires more
analysis and research.

5.2.2 Masking Approaches with Rollback Recovery
With the masking approach the faults-errors and failures
of the HW and SW are masked to the application (and thus
its programmers) and end users. Masking approaches con-
cern three main fault tolerance techniques: Rollback
Recovery, Proactive Action and Replication.

As explained previously, most of the work in fault tol-
erance for HPC is based on Rollback Recovery. Many
research projects have been conducted and results pub-
lished in the past year about automatic checkpoint/restart
on remote storage and diskless checkpointing. Despite
the fact that these domains have received a lot of atten-
tion, several important issues at the exascale remain
open.

All checkpoint/restart techniques need to address two
main problems: (1) find a scalable fault-tolerant protocol
ensuring a consistent cut of the parallel execution in
order to built correct, restartable checkpoint images and
(2) reduce the computational and/or I/O cost of check-
pointing.

Concerning fault tolerant protocols, the progress in the
past 10 years is substantial (Elnozahy et al. 2002;
Bouteiller et al. 2008). The two classes of protocols (coor-
dinated checkpointing (Chandy and Lamport, 1985) and
message logging) were the subjects of strong optimiza-
tion research. As a consequence, both classes of protocols
are very efficient even on high-speed networks and the dif-
ferences in performance and overhead between them
have become less and less significant. Still, we do not
know how well these protocols work for one million
processes. Moreover, in some sense, the optimal protocol

for extreme scale has not been found; such protocol
should, in theory, avoid global checkpoint coordination,
message logging and the domino effect. A solution could
come from a third class of protocols called “communica-
tion-induced checkpoint” (CIC). However, previous
studies have demonstrated that this kind of protocol
could force many more checkpoints than the other
classes. Since the cost of checkpointing is supposed to be
very high, all previous research has considered that the
fewer checkpoints are taken during the execution the bet-
ter. This raises the question of the checkpoint cost in
exascale systems. If the checkpoint cost could be reduced
significantly (for example, by redesigning the architec-
ture and using dedicated HW) then CIC protocols may
provide a good trade-off.

If fault-tolerance protocols are well understood for
MPI environments, there were few studies in the context
of PGAS languages and distributed objects on a large
scale. What kind of fault tolerant protocols are preferable
for these environments? Are there some fundamental dif-
ferences that preclude the use of some protocols in these
environments or make them inefficient?

Independently of the programming and runtime envi-
ronment, there is a lack of understanding of the applica-
tion of fault-tolerant protocols in parallel applications.
Since the beginning of the research in fault tolerance in
parallel applications, the assumption is that parallel pro-
grams essentially behave like distributed systems and as a
consequence, their state should be saved using the same
mechanisms. This initial assumption is questionable since
parallel applications present some essential properties
that could be the opportunity for designing or specializ-
ing fault-tolerance principles specifically for them.

The cost of checkpointing is the second main problem
to address for checkpoint/restart. It has been observed that
a large fraction of the checkpointing cost is due to the
remote storage of the checkpoint image. In the current
“balanced parallel architecture” followed by most of the
HPC centers, checkpoint images are stored on a parallel
file system through I/O nodes. The bandwidth of the I/O
nodes is limited and, according to some measurements
and evaluation, the time to store a checkpoint could be as
high as 30 minutes. A technique to avoid this bottleneck
is to store the checkpoint image on computing nodes.
Some redundancy mechanisms are used to ensure that the
checkpoints will stay available even if several computing
nodes fail. The extreme approach in this domain is disk-
less checkpointing (Plank et al. 1998; Zheng et al. 2004;
Lu, 2005), which essentially stores the checkpoint
images in the memory of the computing nodes, still with
some form of redundancy to ensure the checkpoint avail-
ability in case of failures. Diskless checkpointing has
been the object of many research studies. A version of
diskless checkpointing supporting a single node failure is

383TOWARD EXASCALE RESILIENC

implemented in SCR (SCR, 2009) and has been used
since 2007 at LLNL. It has some important drawbacks,
such as the doubling of the memory occupation and some
need for coordination (when computing the checksums).
These two drawbacks could be considered as unaccepta-
ble for exascale systems where the memory will be a
very expensive resource and where coordination should
be avoided as much as possible. However, new technolo-
gies, such as SSD devices, seem to offer a new perform-
ance and stability trade-off compared to random access
memory (RAM) and disks. This is seen by the commu-
nity as an opportunity to revisit diskless checkpointing
studies in the light of these new technologies.

Besides avoiding the bottleneck of remote file systems,
another way to reduce the checkpoint time is to reduce the
checkpoint size. This topic also has been the object of
many researches from various angles: OS-level incremen-
tal checkpointing, programmer-directed memory exclu-
sion, compiler-detected dead variables, etc. The two key
points exploited by these techniques are: (1) not all data
have to be saved to construct a correct checkpoint and (2)
data that need to be saved may not be completely updated
between two consecutive checkpoints. The researched
optimality is the following: between two subsequent
checkpoints, save only the updated data that will be read
in the future (as parameters of the next operations inside
the application or as results of the execution). This sup-
poses an accurate determination of the past updates (from
the previous checkpoint) and the future reads. As a mat-
ter of fact, none of the existing systems matches this
objective. As a consequence, there is certainly a need for
further research in this domain.

In addition to increasing the performance in check-
point/restart, there is a need to ensure the correctness of
the data saved and restored for the checkpoint (whether it
is a system-wide or an application-based checkpoint). This
issue, which is mostly ignored currently, is expected to be
significant at the exascale. End-to-end data correctness/
integrity is not a novel topic in storage systems. Several
standards already exist (e.g. ANSI T10-DIF). However,
particularly in the case of checkpoint/restart, every com-
ponent (HW and SW) from registers to the hard disk
needs to conform to give complete confidence. More
progress and research are needed in this domain.

5.2.3 Other Masking Approaches (Proactive Actions
and Replication) The principle of proactive action is
to avoid recovery from faults, errors and failures by pre-
dicting them (from notification from sensors, error rates,
heuristics, etc.) and proactively replace the suspected
components (in theory HW and SW ones) by other cor-
rectly working components providing the same function.
Two main issues have to be addressed: (1) faults, errors
and failure prediction and (2) replacement of suspected

components by correct ones. Several researches have
been conducted on this domain and results were pub-
lished in prediction algorithms (Sahoo et al. 2002; Liang
et al. 2006; Yaw 2007) and proactive process or virtual
machine migration (Chakravorty et al. 2005, 2006; Wang
et al. 2008; Scott et al. 2009).

One limitation of the prediction algorithm studies is the
number of RAS files considered for the prediction algo-
rithms. Most of these studies considered two log files: one
from a cluster of 350 nodes (small compared to our per-
spective of exascale systems) and the other one from the
first 100 days of a BlueGene/L machine. These two traces
are not representative even of current petascale systems
and it is obviously very important to design prediction
algorithms based on the most recent traces and a large
number of traces. Furthermore, systems currently log only
a small subset of the information that can be captured and
would be relevant for error prediction. The sheer volume
of such data may require on the fly analysis, rather than
full capture. We consider efforts in this area as a priority
if research on proactive actions is to be continued.

Research on proactive actions has been conducted despite
the immaturity of prediction algorithms. This research is
useful to understand how the SW could use predictions to
avoid recovering from faults, errors and failures. The results
are quite encouraging, evaluating the overhead of proactive
migration to few percent of the execution time, while sig-
nificantly reducing the occurrence of fatal errors. The first
limitation of these studies is that they only consider HW
fault-error-failure prediction. In such a context the migra-
tion of a process or a virtual machine from a suspected node
to a safe one makes sense. However, none of the studies
investigate the case of predicted SW faults-errors-failures.
This lack is significant, since one can estimate from the
available RAS analysis results that SW is responsible for
about 50% of the faults-errors-failures. Avoiding recov-
ery for predicted SW faults-errors-failures means being
able either to confine their effects or to track the affected
SW parts and to be able to replace the suspected SW parts.
A frequent misconception is that SW errors are systemic
and strongly correlated, so that replacing SW components
would mean having a different code implementing each
SW component. In fact, many SW errors are intermittent
and manifest themselves only in specific, rare execution
states (specific memory allocation, specific schedule,
etc.); many such errors can be avoided by tinkering with
the execution state (Qin et al. 2005). Research on the han-
dling of SW errors is still at an early stage and has not
been explored in the context of HPC applications and sys-
tems.

More generally, there is a need to better understand the
benefit of proactive actions. If these are limited to HW,
they would still require some recovery system to tolerate
the large amount of unpredicted failures. Even if proac-

384 COMPUTING APPLICATIONS

tive actions are extended to SW faults-errors-failures,
there would still remain a fraction of false negatives
(actual faults-errors-failures that will not be predicted),
obliging the use of recovery mechanisms. There may be
systemic differences between predictable errors and alea-
tory errors that cannot be predicted reliably. Categorizing
errors according to their predictability could lead to much
improved error handling. We consider developing the
understanding of predictable errors and proactive actions
as a main priority.

Replication is another masking approach for fault tol-
erance. It is the most frequently used resilience technique
in all large-scale distributed systems: sensor networks,
Grid, Cloud, peer-to-peer (P2P), Desktop Grid, etc. Rep-
lication has two main costs: (1) the need to at least dou-
ble the number of replicated components in the system
and (2) the overhead to guarantee the replication consist-
ency and detect errors. Both costs seem unacceptable in
the context of HPC systems (except for some very lim-
ited cases): CPUs, memory and networks are very expen-
sive and high energy-consuming components; the speed
of communication and asynchrony are essential for per-
formance, so matching replicates is difficult, and much
of the current state is not externally visible, so errors can
be detected long after their occurrence. Thus classic rep-
lication may not be feasible for HPC unless a dramatic
change in the HW design of HPC machines emerges.
Such a breakthrough should not be disregarded, since the
past has demonstrated that HW developers can develop
radically new approaches, based on new objectives (such
as a drastic reduction of the power consumption) and sur-
prise the community. Besides classic replication, there is
probably an opportunity to investigate partial replication
of only the most critical and fault-errors-failure prone
HW components. However, such an approach would
require a deep understanding of the faults-errors-failures
sources in very large systems, which is by itself still an
open question.

5.2.4 Specialized Approaches The difficulty of desig-
ning or improving a “one size fits all” fault-tolerance
approach for exascale systems motivates the investiga-
tion of dedicated fault tolerance and recovery mecha-
nisms targeting specific failure modes: a kind of divide
and conquer approach to fault tolerance. The expected
benefit of this approach is that one would trigger the min-
imal sufficient response when a failure happens; the ulti-
mate goal being to be able to confine the recovery to only
the affected subsystems and avoid as much as possible a
global rollback of the execution.

Let us take the example of the transient errors in the
L1 cache. Many processors have a write-through L1 and
an inclusive L2, so that all L1 values are also present in
the L2 cache. As a result, it is sufficient to detect errors in

the L1 cache; errors can be corrected by invalidating the
L1 cache so that values are reloaded from the L2. Ven-
dors take advantage of this by using a cheaper and faster
parity check in the L1, rather than a more expensive
ECC.

Such specialized approaches are already used in HPC
machines: For example, the network interface often has
retransmission mechanisms that are used when transmis-
sion errors or uncertain states (e.g. timeouts) are
detected; one can trade off the overhead of error correc-
tion in the network against the overhead of maintaining a
copy of data sent until reception is acknowledged. How-
ever, the mechanisms in place cannot correct all errors
cases and a posteriori dedicated approaches could be a
solution for certain cases.

One problem with the dedicated approach is that it is
machine dependent. Another problem is that error detec-
tion may occur long after the error occurred; the error is
not contained, and it can affect a large portion of the sys-
tem before it is detected, so that recovery becomes glo-
bal. If we take the example of a detected but uncorrected
transient error in the main memory, affecting a communi-
cation receive buffer, then the recovery process would
typically involve the sender of the message. Such
dependency leads to some coordination between several
processes and has a much higher cost than a local correc-
tive technique.

Dedicated techniques rely on the capability to confine
faults. The capability to quickly detect an error and to
limit its contamination is essential.

As discussed earlier, situational awareness is very
important in order to intervene before minor problems
treated silently become or lead to very critical ones. Thus,
even if dedicated techniques are applied, there is still a
need to inform other components about the detected
events and how they are being treated. Moreover, if the
event is perceived by several detectors and can be cor-
rected in different ways, coordination will be required.

Specialized approaches are undoubtedly appealing for
their very low recovery cost, but further investigation is
required to clearly understand their limits.

5.2.5 Hardware Support The four main mechanisms
used in rollback recovery are for: (1) detecting failures,
(2) storing and restoring the state of a parallel execution,
(3) ensuring that the state of the parallel execution is
always consistent, despites failures and (4) computing an
accurate difference between two successive states. Note
that other fault-tolerance approaches need several or all
of these mechanisms, in addition to others.

In the current supercomputers very little HW has been
designed specifically to help implement fault tolerance.
For example, when checkpointing on a remote file sys-
tem, the process checkpoint images are transmitted by

385TOWARD EXASCALE RESILIENC

the communication network, which is used by applica-
tions during their execution, and stored on disks used for
storing users files. No specific HW is available to imple-
ment fault-tolerant protocols. For example, message log-
ging is done in the main memory of the node. Another
essential mechanism for fault tolerance (incremental
checkpointing) currently relies on OS mechanisms.

However, because the speed of detection, reaction and
recovery will be critical in effectively supporting fault
tolerance in exascale systems, there is a need to investi-
gate the cost, benefits and limitations of using specific
HW for fault tolerance. There are several opportunities
for the four mechanisms used in rollback recovery. SSD
devices have demonstrated superior performance com-
pared to disks and could be a good alternative for check-
point image storage and retrieval. A specific network can
help to circulate information about the detected faults-
errors-failures and their current treatment. A specific
reduction network can also be used to speed up the com-
putation of checksums in diskless checkpointing. Another
example is the HW support for transactional memory that
can be reused to implement efficient incremental check-
pointing (Teodorescu et al. 2006).

5.2.6 Software Support SW is suspected to be respon-
sible for a significant fraction, if not the large majority, of
the failures in exascale systems. The SW run on large-
scale parallel computers is already very complex, but has
not been developed with the same rigor of complex HW
(such as current microprocessors) with regards to its ver-
ification. There is a need to use better development meth-
ods to make code more robust (robust journaling
capability). There is also a need to more quickly detect
and better confine SW errors in order to limit their con-
tamination and make the error correction more local
(avoiding global rollback).

5.3 Fault Oblivious Algorithms

Having the applications and their algorithms indifferent
to fault-errors-failure would be an ultimate goal of the
resilience community. As mentioned before, this could
only be a long-term effort since not only the application
and its algorithms, but also all SW involved in the execu-
tion affected by the fault-error-failure should also be fault
tolerant (or resilient).

Very little is known in this domain of auto-repairable
algorithms, even if some algorithms for distributed sys-
tems, such as self-stabilization algorithms (Dijkstra, 1974),
can recover themselves from faults. Self-stabilization is a
property of an algorithm that allows it to eventually
recover from a fault using a forward recovery strategy:
instead of being externally stopped and rolled back to a
previous correct state, the algorithm continues its execu-

tion, impaired by the fault, potentially not respecting its
given specifications (giving wrong results), until the
algorithm itself corrects the effects of the faults without
external influence. Self-stabilization has several limits in
the context of HPC applications: (1) self-stabilized algo-
rithms have been studied uniquely in the context of basic
distributed system operations (leader election, counting,
etc.) and never approached for HPC, (2) the stabilization
phase duration is unknown and (3) any fault occurring dur-
ing the stabilization phase essentially restarts the stabiliza-
tion. Thus, it is not clear that this approach makes any
sense for the numerical algorithms themselves. However,
many mechanisms in runtime environments that support
parallel computations use distributed system operations
that could benefit from this family of algorithms.

It is suspected that iterative methods have some funda-
mental properties, allowing them to be good starting
points for the exploration of fault oblivious algorithms
(Liu, 2002; Geist and Engelmann, 2002). Asynchronous
iterative methods tolerate delays in the communications
of data between processes. Research must be conducted
to understand how these methods resist information loss
and to what extent they still converge despite a certain
level of faults. According to applied mathematicians,
these methods have never been directly studied in this
context. We see this research as a multidisciplinary one
mixing research in mathematics and computer science.

5.4 Stress Testing

In addition to progress in applications, systems and HW,
there is a need for experimental environments that are able
to stress and compare different fault-tolerance approaches
and techniques in a scientific way. Large-scale testbeds are
essential in the observation and understanding of complex
phenomena. SW environments capable of reproducing
usage and fault scenarios are also needed to test and debug
new resilience concepts on a large scale before putting
them into production.

6 Summary

This paper argues that resiliency is a critical challenge that
cannot be ignored for exascale systems. Incremental
improvements of current methods will not be sufficient to
meet the failure challenges present in exascale systems,
which are anticipated to experience various kinds of faults
many times per day. This paper lays out several catego-
ries of errors, including silent and transient, that will have
to be dealt with at the exascale. It also identifies a range of
error sources, including SW issues. The paper goes on to
identify four major research topics that need to be explored
to enable the exascale. Hence, this white paper synthesizes
the motivations, observations and research issues consid-

386 COMPUTING APPLICATIONS

ered as determinant of several complimentary experts of
HPC in applications, programming modeling, distributed
systems and systems.

Author Biographies

Franck Cappello holds a Senior Researcher position at
INRIA. He is also Visiting Research Professor at the
Department of Computer Sciences of the University of
Illinois at Urbana Champaign. He leads the Grand-Large
project at INRIA, focusing on High Performance issues in
Large Scale Distributed Systems. He is the co-director of
the INRIA-Illinois Joint Laboratory on Petascale Com-
puting. Franck Cappello received a Ph.D. in Computer
Science of the University of Paris XI in 1994. He has ini-
tiated the XtremWeb (Desktop Grid) and MPICH-V
(Fault tolerant MPI) projects. He is the initiator and was
the director of the Grid5000 project, a nation wide com-
puter science platform for research in large scale parallel
and distributed systems. He has authored papers in the
domains of High Performance Programming, Desktop
Grids, Grids and Fault tolerant MPI. He has contributed to
more than 40 Program Committees. He is editorial board
member of the international Journal on Grid Computing,
Journal of Grid and Utility Computing and Journal of
Cluster Computing. He is a steering committee member
of IEEE/ACM HPDC and IEEE/ACM CCGRID.

Al Geist is a Corporate Research Fellow at Oak Ridge
National Laboratory. He is the Chief Technology Officer
of the Leadership Computing Facility and also leads a
35 member Computer Science Research Group. He is
one of the original developers of PVM (Parallel Virtual
Machine), which became a worldwide de facto standard
for heterogeneous distributed computing. He was actively
involved in the design of the Message Passing Interface
(MPI-1 and MPI-2) standard.

William Gropp received his B.S. in Mathematics from
Case Western Reserve University in 1977, a MS in Phys-
ics from the University of Washington in 1978, and a
Ph.D. in Computer Science from Stanford in 1982. He
held the positions of assistant (1982–1988) and associate
(1988–1990) professor in the Computer Science Depart-
ment at Yale University. In 1990, he joined the Numeri-
cal Analysis group at Argonne, where he was a Senior
Computer Scientist in the Mathematics and Computer Sci-
ence Division, a Senior Scientist in the Department of
Computer Science at the University of Chicago, and a Sen-
ior Fellow in the Argonne-Chicago Computation Institute.
From 2000 through 2006, he was also Deputy Director of
the Mathematics and Computer Science Division at
Argonne. In 2007, he joined the University of Illinois at
Urbana-Champaign as the Paul and Cynthia Saylor Pro-

fessor in the Department of Computer Science. His
research interests are in parallel computing, software for
scientific computing, and numerical methods for partial
differential equations. He has played a major role in the
development of the MPI message-passing standard. He is
co-author of the most widely used implementation of MPI,
MPICH, and was involved in the MPI Forum as a chapter
author for both MPI-1 and MPI-2. He has written many
books and papers on MPI including “Using MPI” and
“Using MPI-2”. He is also one of the designers of the
PETSc parallel numerical library, and has developed effi-
cient and scalable parallel algorithms for the solution of
linear and nonlinear equations. Gropp was named an
ACM Fellow in 2006 and received the Sidney Fernbach
Award from the IEEE Computer Society in 2008.

Laxmikant Kale is a Professor of Computer Science at
the University of Illinois at Urbana-Champaign, where
he has been a faculty member since 1985. He received a
Ph.D. in computer science from State University of New
York, Stony Brook, in 1985. His research has involved
various aspects of parallel computing, with a focus on
enhancing performance and productivity via adaptive
runtime systems, and designing programming abstrac-
tions based on use-cases from multiple applications.He
led the development of Charm++ and AMPI program-
ming systems that embody an adaptive runtime system.
He has collaboratively developed well-known parallel
applications in areas including biophysics, astronomy
and quantum chemistry. He was co-recipient of a Gordon
Bell award in 2002.

William Kramer, National Center for Supercomputing
Applications William T.C. Kramer is deputy project direc-
tor at the National Center for Supercomputing Applica-
tions; he is responsible for leading the Blue Waters
project, a National Science Foundation-funded project, to
deploy the first general purpose, open science, sustained-
petaflop supercomputer as a powerful resource for the
nation’s researchers. Blue Waters is a 8 year project with
an overall cost of over $500M. Previously Kramer was the
general manager of the National Energy Research Scien-
tific Computing Center (NERSC), the flagship computing
facility of the Department of Energy’s Office of Science at
Lawrence Berkeley National Laboratory (LBNL). Prior
to Berkeley Lab, Kramer worked at the NASA Ames
Research Center, where he was responsible for all
aspects of operations and customer service for NASA’s
Numerical Aerodynamic Simulator (NAS) supercomputer
center and other large computational projects. Blue Waters
will be the 20th supercomputer Kramer deploys and man-
ages. Several were first of their kind, including the world’s
first UNIX supercomputer and the first production quality
massively parallel system. In addition he deployed and

387TOWARD EXASCALE RESILIENC

managed large clusters of workstations, several extremely
large data repositories, some of the world’s most intense
networks, and other extreme scale systems. He has also
been involved with the design, creation and commission-
ing of six “best of class” HPC facilities. He holds a BS
and MS in computer science from Purdue University, an
ME in electrical engineering from the University of Del-
aware, a PhD in computer science at UC Berkeley and a
number of professional certifications. Kramer’s research
interests include large-scale system performance evalua-
tion, systems management, scheduling, fault detection
and resiliency, and cyber security. He has taught classes,
seminars, and tutorials on computing topics, including
cluster computing, computer security, computer graphics
and visualization, data intensive computing and high per-
formance computing. Kramer has awards from NASA, the
Association for Computing Machinery (ACM) and was
named one of HPCWire’s “People to Watch in 2005”.

Marc Snir is Michael Faiman and Saburo Muroga Pro-
fessor in the Department of Computer Science at the Uni-
versity of Illinois at Urbana-Champaign and has a courtesy
appointment in the Graduate School of Library and Infor-
mation Science. He currently pursues research in parallel
computing. He is PI for the software of the petascale Blue
Waters system and co-director of the Intel and Microsoft
funded Universal Parallel Computing Research Center
(UPCRC). He was head of the Computer Science Depart-
ment from 2001 to 2007. Until 2001 he was a senior man-
ager at the IBM T. J. Watson Research Center where he
led the Scalable Parallel Systems research group that was
responsible for major contributions to the IBM SP scala-
ble parallel system and to the IBM Blue Gene system.
Marc Snir received a Ph.D. in Mathematics from the
Hebrew University of Jerusalem in 1979, worked at NYU
on the NYU Ultracomputer project in 1980–1982, and was
at the Hebrew University of Jerusalem in 1982–1986,
before joining IBM. Marc Snir was a major contributor to
the design of the Message Passing Interface. He has pub-
lished numerous papers and given many presentations on
computational complexity, parallel algorithms, parallel
architectures, interconnection networks, parallel lan-
guages and libraries and parallel programming environ-
ments. Marc is AAAS Fellow, ACM Fellow, and IEEE
Fellow. He has Erdos number 2 and is a mathematical
descendent of Jacques Hadamard.

Notes
1 By definition a failure is the impact of an error itself caused by

a fault.

2 Situation awareness (SA) is a term used by the Human Fac-
tors community to indicate “the perception of elements in the
environment within a volume of time and space, the compre-

hension of their meaning, and the projection of their status in
the near future,” (EN, 1995). Another definition is knowing
what is happening and what has happened so a person can
take the correct action.

References

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing. IEEE Trans. Dependable Secure Com-
put. 1: 11–33.

Bouteiller, A., Bosilca, G. and Dongarra, J. (2008). Redesign-
ing the message logging model for high performance. In
Proceedings of the International Supercomputing Confer-
ence (ISC 2008), Dresden, Germany, June.

Blum, M. and Kannan, S. (1995). Designing programs that
check their work. J. ACM 42(1): 269–291.

BLCR. http://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.
shtml 2009 (Accessed: September 2 2009)

Bronevetsky, G., Marques, D., Pingali, K. and Stodghill, P.
(2003). C3: A system for automating application-level
checkpointing of MPI programs. In Proceedings of the
16th International Workshop on Languages and Compil-
ers for Parallel Computing (LCPC 2003), October.

Chen, Z. (2008). Extending algorithm-based fault tolerance to
tolerate fail-stop failures in high performance distributed
environments. In proceedings of the IEEE Parallel and
Distributed Processing Symposium, April, pp. 1–8.

Wang, C., Mueller, F., Engelmann, C. and Scott, S. L. (2008).
Proactive process-level live migration in HPC environ-
ments. In Proceedings of Supercomputing 2008, Tampa.

CIFT. http://www.mcs.anl.gov/research/cifts/index.php 2009
(Accessed: September 2 2009)

Chandy, K. M. and Lamport, L. (1985). Distributed snapshots:
determining global states of distributed systems. ACM
Trans. Comput. Syst. 3(1): 63–75.

Chakravorty, S., Mendes, C. and Kale, L. V. (2005). Proactive
fault tolerance in large systems. HPCRI Workshop in con-
junction with HPCA 2005.

Lu, C. and Reed, D. A. (2004). Assessing fault sensitivity in
MPI applications. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing.

CSCL. http://www.cs.wisc.edu/condor/manual/v6.8/4_2Condor_
s_Checkpoint.html 2009 (Accessed: September 2 2009)

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of dis-
tributed control. Commun. ACM 17(11), 643–644.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M. and Johnson, D. B.
(2002). A survey of rollback-recovery protocols in mes-
sage-passing systems. ACM Comput. Surv. 34(3): 375–408.

Endsley, M. R. (1995). Toward a theory of situation awareness
in dynamic systems. Human Factors 37(1), 32–64.

Engelman, C. and Geist, A. (2005). Super-scalable algorithms
for computing on 100,000 processors. In Proceedings of the
International Conference on Computational Science, May.

FT-MPI. http://icl.cs.utk.edu/ftmpi/ 2009
Glosli, J. N., Richards, D. F., Caspersen, K. J., Rudd, R. E.,

Gunnels, J. A. and Streitz, F. H. (2007). Extending stabil-
ity beyond CPU millennium: a micron-scale atomistic
simulation of Kelvin-Helmholtz instability, a micron-
scale atomistic simulation of Kelvin-Helmholtz instabil-

388 COMPUTING APPLICATIONS

ity. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, Reno.

Geist, A. and Engelmann, C. (2002). Development of naturally
fault tolerant algorithms for computing on 100,000 proces-
sors. http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf.

Huang, K. and Abraham, J. (1984). Algorithm-based fault toler-
ance for matrix operations. IEEE Trans. Comput. C-33(6):
518–528.

Kramer, W. et al. (2007). Report of the workshop on petascale
systems integration for large scale facilities. LBNL Tech-
nical Report Number 63538. Lawrence Berkeley National
Laboratory, http://repositories.cdlib.org/lbnl/LBNL-63538.

Kramer, W. (2008). PERCU: A holistic method for evaluating
high performance computing systems. Dissertation, Uni-
versity of California Berkeley.

LAM/MPI. http://www.lam-mpi.org/ 2009 (Accessed: Septem-
ber 2 2009)

Liu, G.-R. (2002). Mesh Free Methods: Moving Beyond the
Finite Element Method. Boca Raton: CRC Press, ISBN
0849312388.

Libckpt. http://www.cs.utk.edu/~plank/plank/www/libckpt.html
2009 (Accessed: September 2 2009)

Lu, C. D. (2005). Scalable diskless checkpointing for large par-
allel systems. Ph.D. dissertation, University of Illinois at
Urbana-Champaign.

Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fédak, G.,
Germain, C., Hérault, T. and Lemarinier, P. (2002).
MPICH-V: toward a scalable fault tolerant MPI for vola-
tile nodes. In Proceedings of SuperComputing 2002.
IEEE, November, http://mpich-v.lri.fr/.

MVAPICH. http://mvapich.cse.ohio-state.edu/overview/mvapich/
2009 (Accessed: September 2 2009)

Nagaraja, K., Li, X., Bianchini, R., Martin, R. and Nguyen, T.
D. (2003). Using fault Injection and modeling to evaluate
the performability of cluster based services. In Proceed-
ings of the 4th USENIX Symposium on Internet Technol-
ogies and Systems, Seattle, WA, March.

OpenMPI. http://www.open-mpi.org/. 2009 (Accessed: Septem-
ber 2 2009)

Oliner, A. and Stearley, J. (2007). What supercomputers say: a
study of five system logs. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks
(DSN).

PDSI. http://pdsi.nersc.gov 2009 (Accessed: September 2 2009)
Plank, J., Li, K. and Puening, M. (1998). Diskless checkpoint-

ing. IEEE Trans. Parallel Distr. Syst. 9(10): 972–986.

Plank, J. S., Chen, Y., Li, K., Beck, M. and Kingsley, G. (1999).
Memory exclusion: optimizing the performance of check-
pointing systems. Software Pract. Ex. 29(2): 125–142.

Qin, F., Tucek, J., Sundaresan, J. and Zhou, Y. (2005). Rx:
treating bugs as allergies—a safe method to survive soft-
ware failure. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP’05), October.

Sahoo, R. K., Bae, M., Vilalta, R., Moreira, J., Ma, S. and Gupta,
M. (2002). Providing persistent and consistent resources
through event log analysis and predictions for large-scale
computing systems. In Proceedings of IEEE/ACM Super-
computing 2002.

Liang, Y., Zhang Morris Jette, Y. and Sivasubramaniam Ram-
endra Sahoo, A. (2006). BlueGene/L failure analysis and
prediction models. In Proceedings of IEEE DSN.

Chakravorty, S., Mendes, C. L. and Kale, L. V. (2006). Proac-
tive fault tolerance in MPI Applications via task migra-
tion. In Proceedings of HIPC 2006, LNCS, volume 4297,
p. 485.

Scott, S., Engelmann, C., Vallee, G., Naughton, T., Tikotekar,
A., Ostrouchov, G., Leangsuksun, C., Naksinehaboon, N.,
Nassar, R., Paun, M., Mueller, F., Wang, C., Nagarajan, A.
and Varma, J. (2009). A tunable holistic resiliency approach
for high-performance computing systems. Poster in Pro-
ceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP),
Raleigh, NC, USA.

SCR. http://scalablecr.sourceforge.net/ 2009 (Accessed: Sep-
tember 2 2009)

Schroeder, B. and Gibson, G. (2007). Understanding failures in
petascale computers. J Phys. Conf. 78: 012022.

Teodorescu, R., Nakano, J. and Torrellas, J. (2006). SWICH: a
prototype for efficient cache-level checkpointing and roll-
back. IEEE Micro. 26(5): 28–40.

Von Neuman, J. (1956). Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In
Automata studies, edited by C. E. Shannon and J. McCa-
rthy. New Jersey: Princeton University Press, pp. 43–98.

Yawei Li, Prashasta Gujrati, Zhiling Lan, Xian-he Sun, “Fault-
Driven Re-Scheduling For Improving System-level Fault
Resilience”, in Proceedings of ICPP 2007.

Zheng, G., Shi, L. and Kale, L. V. (2004). FTC-Charm++: an
in-memory checkpoint-based fault tolerant runtime for
Charm++ and MPI. In Proceedings of the 2004 IEEE
International Conference on Cluster Computing, San
Diego, CA, September, pp. 93–103.

