
Improving the Scaling of an Asynchronous Many-Task Runtime
with a Lightweight Communication Engine

Omri Mor
University of Illinois

Urbana–Champaign, USA
omrimor2@illinois.edu

George Bosilca
Innovative Computing Laboratory

University of Tennessee
Knoxville, USA

bosilca@icl.utk.edu

Marc Snir
University of Illinois

Urbana–Champaign, USA
snir@illinois.edu

ABSTRACT

There is a growing interest in Asynchronous Many-Task (AMT)
runtimes as an efficient way to map irregular and dynamic parallel
applications onto heterogeneous computing resources. In this work,
we show that AMTs nonetheless struggle with communication bot-
tlenecks when scaling computations strongly and that the design
of commonly-used communication libraries such as MPI contribute
to these bottlenecks. We replace MPI with LCI, a Lightweight Com-
munication Interface that is designed for dynamic, asynchronous
frameworks, as the communication layer for the PaRSEC runtime.
The result is a significant reduction of end-to-end latency in com-
munication microbenchmarks and a reduction of overall time-to-
solution by up to 12% in HiCMA, a tile-based low-rank Cholesky
factorization package.

CCS CONCEPTS

•Networks→ Programming interfaces; •Computingmethod-

ologies→ Parallel programming languages; Parallel algorithms.

KEYWORDS

message-passing, MPI, lightweight communication, asynchronous
many-task, dynamic runtime, low-rank Cholesky, strong scaling
ACM Reference Format:

Omri Mor, George Bosilca, and Marc Snir. 2023. Improving the Scaling of
an Asynchronous Many-Task Runtime with a Lightweight Communication
Engine. In 52nd International Conference on Parallel Processing (ICPP 2023),
August 07–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3605573.3605642

1 INTRODUCTION

The search for more efficient hardware is leading to increasingly
complex and heterogeneous platforms. The search for more efficient
algorithms is resulting in codes that are more irregular and adaptive.
The traditional bulk-synchronous computation models are not well
suited to either, as they force unnecessary synchronization. These
developments have led to a resurgence of research into dynamic
runtimes that can increase asynchrony and automatically manage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605642

the overlap of data movement with fine-grained computation. Their
typical communication patterns exhibit these properties:

• Large numbers of independent messages sent and received si-
multaneously: a node may run hundreds of independent tasks,
each producing and consuming data.

• Dynamically changing communication patterns.
• Separation between the control and data layers: control messages
are generated and consumed by the runtime, while data messages
are generated and consumed by computing tasks; they have
different characteristics.

• Significant variability in message size: control messages are typi-
cally a fraction of the size of data messages, while data messages’
size depends on task type and, possibly, input values.

Communication libraries such as MPI are designed and optimized
for regular communications with infrequent long messages and
do not support well the unique communication characteristics of
dynamic runtimes: communication overheads become a bottleneck,
especially when strong scaling, as the number of tasks per core
and/or their size shrinks, so that communications cannot always
be covered and large latencies result in idle computation resources.
Performance can be improved by using a communication layer that
is better adapted to the needs of these runtimes. In this work, we
make the following contributions:

(1) Establish why strong scaling is challenging even when an ap-
plication seems to expose sufficient parallelism.

(2) Describe the (new) communication abstraction of PaRSEC [4, 5]
and how this abstraction is implemented with MPI.

(3) Describe LCI [11], the Lightweight Communication Interface,
and how we use it to implement PaRSEC communication.

(4) Demonstrate sustained performance uplift over MPI in a series
of PaRSEC microbenchmarks.

(5) Show how this translates to improved real performance in
HiCMA [6–8], a state-of-the-art tile-based low-rank Cholesky
factorization application that uses PaRSEC.

The rest of this paper is organized as follows. In Section 2 we
discuss the communication needs of dynamic runtimes and issues
that arise with strong scaling. Section 3 describes related work.
Section 4 describes the new PaRSEC communication engine and
its current MPI backend. In Section 5 we describe LCI, why it is a
better fit for dynamic runtimes, and how we utilize its feature set in
PaRSEC. We demonstrate our experimental results comparing the
MPI and LCI backends using both microbenchmarks and HiCMA in
Section 6. We conclude with future research directions in Section 7.

https://orcid.org/0009-0002-0969-3897
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0002-3504-2468
https://doi.org/10.1145/3605573.3605642
https://doi.org/10.1145/3605573.3605642


ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Omri Mor, George Bosilca, and Marc Snir

2 BACKGROUND

2.1 Communication in Dynamic Runtimes

At a fundamental level, a parallel execution consists of a partially
ordered set of operations; the partial program order represents data
and control dependencies among operations. Specifying a parallel
computation at this level is not practical for high-level programming
and does not provide an efficient execution model due to sched-
uling and communication overheads. A practical model will use
coarse-grain “operations” and will aggregate individual communica-
tions and synchronizations. This coarsening imposes unnecessary
restrictions on the execution order of operations, which may re-
sult in a loss of parallelism. Different programming models choose
different compromises between these two conflicting forces. At
one extreme, the Bulk-Synchronous Parallel (BSP) model focuses on
aggregation. In this model, computations involve a fixed number of
processes iterating through the same sequence of epochs. There are
no dependencies between operations executed in the same epoch
by different processes. This model avoids scheduling overheads
and facilitates the aggregation of all interprocess communications,
epoch by epoch. On the other hand, it requires that the computa-
tion be decomposed into a fixed number of repeated “tasks” (the
execution of an epoch by a process), all of the same size. For regular
algorithms that are amenable to such a decomposition, the BSP
model reduces runtime overheads. Communications will typically
involve either a few large messages per epoch or collective opera-
tions. MPI was designed at a time when many HPC applications
were bulk-synchronous, so MPI implementations have tended to
optimize for such use cases. At the other extreme, Asynchronous
Many-Task (AMT) models represent computations as a set of tasks
and dependencies between tasks. Tasks are scheduled dynamically
when all their dependencies are satisfied and computation resources
are available. This provides much more flexibility to express algo-
rithms that are irregular, but imposes more work on the runtime.
The runtime overhead is reduced by ensuring that tasks are large
enough to amortize the (presumably constant) scheduling over-
head; communication overheads are hidden by over-decomposing,
i.e., having more tasks than compute resources, so that a ready task
can execute while other tasks wait for dependencies to be resolved.

Runtimes that implement AMT models typically use two classes
of messages: control messages that tend to be rather short—on
the order of a few kilobytes at most—and data messages that han-
dle data dependencies across tasks. These tend to be longer than
the control messages, but are shorter than in the BSP model, as
over-decomposition reduces task data size. It is common for these
runtimes to have a notion of task priority, allowing the scheduler
to prioritize the execution of tasks on the critical path. It is also
necessary to prioritize communications in such a manner that high-
priority tasks receive data before low-priority tasks. In addition,
control messages should not be delayed by data messages.

Task graphs tend to be complex and may be data-dependent; task
execution and communication times vary. Therefore, it is usually
not possible to predict message arrival order, and the runtime pro-
cesses the incoming messages in the order of their arrival. As task
execution is dependent on communications, this nondeterminism
inherently leads to nondeterministic task execution order and thus
to the order of outgoing communications that are subsequently

generated. Thus, most applications using dynamic runtimes exhibit
non-deterministic communication patterns [9]. Different communi-
cation orders may have a significant impact on the order in which
the task graph is executed.

2.2 Strong Scaling

When strong scaling a problem to larger core counts, it becomes
necessary to increase the total number of tasks by reducing their
individual size. The amount of computation and communication
per processor will decrease, but the relative amount of runtime
overhead will increase since the (presumably fixed) overhead of
task scheduling will not be amortized by the shorter computation.
In addition, messages will be shorter, so that message rate, rather
than bandwidth, becomes the critical communication bottleneck. If
over-decomposition is reduced in order to palliate these effects, then
message latency and proper handling of priorities become critical,
as communication may not always be covered by computation.

3 RELATEDWORK

Communication libraries and runtimes have been designed for a
variety of purposes and with different resulting characteristics.
Low-level libraries such as IB verbs target the InfiniBand hardware
abstraction directly; while this permits an application complete
control over the desired behavior, it is difficult to utilize and port
to different network hardware, so few high-level runtimes imple-
ment communications directly over these abstractions. A notable
exception to this is Charm++ [20], which has direct support for IB
verbs and other low-level communication interfaces [21, 31].

Thus for portability and familiarity, most dynamic runtimes have
used widespread interfaces such as MPI [22], thereby reducing
the effort of porting to new systems and allowing the runtime
developers to focus on core concerns. PaRSEC [4, 5] and HPX [19]
both primarily use MPI, while Charm++ uses MPI on networks that
do not yet have direct support. Similarly, Legion [1] uses GASNet [2]
to support its active messaging paradigm. These interfaces have
traditionally been used for other purposes, and while they have
recently gained support for features that better support dynamic
runtimes–for instance, the relaxed ordering requirements in MPI
4.0 [23] and the continuations proposal [26]—both encounter the
difficulties described in Section 2.1.

More recently, communication libraries such as the Open Fabrics
Interfaces (OFI, also called libfabric) [17] and Unified Communica-
tion X (UCX) [28] have emerged as a middle ground. These thread
between the low-level hardware interfaces and application-oriented
APIs, providing a performance portability layer for communication.
Both GASNet and MPI implementations have used these middle-
ware in lieu of their own low-level backends, but they have also
been successfully used directly by dynamic runtimes [10].

LCI [30] is comparable to OFI or UCX in its goals of portable
performance. It is a small, easily modifiable research library that
has been used to study API design and implementation issues in the
context of heavily contented multithreaded communication [12, 13]
and graph applications [11, 14, 15].



Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication Engine ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Listing 1: PaRSEC communication engine API

typedef int (*am_cb_t)(comm_engine_t *ce, tag_t tag,
void *msg, size_t msg_size, int src, void
*cb_data);

↩→

↩→

typedef int (*onesided_cb_t)(comm_engine_t *ce,
mem_reg_t lreg, ptrdiff_t ldispl,
mem_reg_t rreg, ptrdiff_t rdispl, size_t
size, int remote, void *cb_data);

↩→

↩→

↩→

int tag_reg(tag_t tag, am_cb_t cb, void *cb_data,

size_t len);↩→

int mem_reg(void *mem, size_t count, datatype_t dtype,

mem_reg_t *lreg, size_t *lreg_size);↩→

int send_am(comm_engine_t *ce, tag_t tag, int remote,

void *addr, size_t size);↩→

int put(comm_engine_t *ce, mem_reg_t *lreg, ptrdiff_t
ldispl, mem_reg_t rreg, ptrdiff_t rdispl,
size_t size, int remote, onesided_cb_t
l_cb, void *l_cb_data, tag_t r_tag, void
*r_cb_data, size_t r_cb_data_size);

↩→

↩→

↩→

↩→

int progress(comm_engine_t *ce);

Figure 1: PaRSEC communication example. Task 𝐴 runs on

node𝑊 with descendant tasks 𝐵 and 𝐶 on nodes 𝑋 and 𝑌 , re-

spectively. There are four dataflows that must be propagated

as part of the broadcast.

4 PARSEC COMMUNICATION

4.1 The PaRSEC Communication Engine

PaRSEC recently integrated a new communication model and
API, shown in Listing 1, that abstracts some of the underlying
implementation details and lets the communication layer work
independently of the backend used. An active-message paradigm
was chosen as a good fit for the asynchronous nature of PaRSEC.

As part of initialization, PaRSEC registers two active messages:
Activate: inform that a task completed, activating descendants
Get Data: retrieve data associated with a completed task
Usage of these two active messages and the put function is demon-
strated by Figure 1. When a task completes, it is determined where
its descendants are to be executed and Activate messages sent
to those destinations. Upon receipt of the Activate message, the

process will evaluate the relative priority of successor tasks de-
pending on data from the predecessor and use these priorities to
determine whether to request data immediately or defer it by giving
precedence to other communications. The prioritization is done
independently for each output data of the completed task. Once
the communication has a sufficiently high relative priority, a Get
Data message is sent to the process on which the predecessor task
was executed, which will subsequently begin a put operation.

4.2 MPI Backend

The MPI backend for PaRSEC uses a structure to encapsulate call-
backs for communications, including information such as what
function to call and what arguments are to be supplied. An array
of these structures is paired with a parallel array of MPI_Request
for communications currently in progress.

4.2.1 Active Messages. Active message handling is split into two
parts—tag_reg registers an active message tag with the communi-
cation runtime while send_am sends an active message to a desti-
nation using a registered tag.

Messages are received using MPI persistent receives: a static
number—configured as five per tag in the current implementation—
of requests are initialized (MPI_Recv_init) and started (MPI_Start)
during tag registration. Since the order and origin of communica-
tions is determined dynamically at execution time, the wildcard
sender MPI_ANY_SOURCE is used. Wildcard tags are not needed, as
all active message tags are explicitly registered and the tag implic-
itly determines which callback to invoke by dint of the indices of
completed requests in the parallel array structure. After a message
is received and its registered callback is executed, the request is
re-enabled so that further messages can be received.

Active message sizes typically fall within the range where MPI
implementations will use an “eager” communication protocol to
transport the data. As such, a blocking MPI_Send is used with the
tag registered for the selected active message as the MPI tag.

4.2.2 Data Transport. While the high-level API uses a one-sided
communication scheme for bulk data transport, the MPI backend
does not use MPI RMA interfaces to implement these functions.
The PaRSEC put interface requires remote completion notifications,
which is not supported by standard MPI RMA. Additionally, the
asynchronous nature of the PaRSEC runtime would likely necessi-
tate using dynamic RMA windows that attach and detach memory
frequently, which are known to have performance limitations un-
der most circumstances [25]. It is certainly not impossible to use
the MPI RMA interfaces to implement the PaRSEC put API, but
exploring this option has been left for future work.

Thus bulk data transport in the MPI backend is implemented
using non-blocking two-sided communication APIs in conjunction
with a handshake message. The origin process of the put sends an
active message informing the target process that it will send data
on a specified tag. This handshake includes additional information
such as where to receive the data, how much data will be sent, and
what callback to call for completion of the put. The active message
handshake callback at the target will post a receive for the specified
buffer with the requested tag; as long as the source does not reuse
the same tag before the communication is complete, this will not



ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Omri Mor, George Bosilca, and Marc Snir

conflict with any other communication. SinceMPImessage ordering
semantics are not required for correct operation in PaRSEC, they
are disabled using the mpi_assert_allow_overtaking Info key if
this is supported by the MPI implementation.

A maximum of 30 data transfers—both sends and receives—are
allowed to be actively polled concurrently. If there is insufficient
space in the global array when a put is started, posting the send is
deferred until prior communications are complete. If, when a hand-
shake message arrives, there is insufficient space, an MPI_Request
is allocated dynamically from amemory pool and the receive posted
using this request; however, requests are only explicitly polled for
progress when in the global array, so this dynamic request will be
polled only when prior communications complete and the request
promoted to the global array. This mechanism is intended to pre-
vent communication bandwidth from being split across too many
concurrent communications. This may reduce aggregate bandwidth,
but also reduces the average completion time of individual commu-
nications. This was deemed an acceptable trade-off when scaling:
tasks become ready faster, potentially reducing idle time.

4.2.3 Progress. As implied by the above description of active mes-
sages and data transport, the global array of MPI_Request is of
length 5 × 𝑁am + 30, where 𝑁am is the number of registered ac-
tive message tags. To allow overlap between progress on existing
communications and starting new ones, the global request array is
polled using MPI_Testsome. For each completed communication,
the corresponding callback is fetched from the parallel array of
callbacks and executed using the supplied arguments. After the
callbacks for all completed communications are executed, incom-
plete communications are moved forward in the global array so
that the free entries are always at the back. While there is free
space in the array, deferred sends are started and dynamic receives
promoted in FIFO order. If no communications were completed
by MPI_Testsome, the progress function returns; otherwise, it
repeats, attempting to make further communication progress.

4.3 The PaRSEC Communication Thread

PaRSEC utilizes a communication thread to handle communication
initialization, progress, and completion. The thread can be config-
ured to execute on a dedicated computing resource or be allowed
to “float”, stealing time from compute threads; which strategy is
preferred is hardware-dependent. This dedicated thread is used to
alleviate performance limitations on the part of MPI implemen-
tations. Prior work [24] has demonstrated that MPI performance
can decrease significantly when many threads communicate con-
currently. PaRSEC allows computing threads to send Activate
messages directly rather than funneling them through the commu-
nication thread, but as we show in Section 6, doing so can decrease
performance and is therefore not the default.

The communication thread has four primary responsibilities:
(1) Aggregate Activate messages sent to the same destination
(2) Poll the communication engine progress function
(3) Send deferred Get Data messages
(4) Initiate deferred put communications
As discussed above, the progress function in the MPI backend
both polls for any completed communications and executes asso-
ciated completion callbacks. These callbacks can themselves start

new communications, as shown in Figure 1. If these communica-
tions could not be immediately started, they are added to “deferred”
queues to be initiated later.

As a consequence of the communication thread design, these
roles can interfere with each-other. For example, certain completion
callbacks can take a long time to execute: an Activate message
must unpack each aggregated activation, iterate over all local de-
scendants of the task in question, determine which data are needed
from the predecessor, and send Get Data messages as necessary.
During the period of time that this callback is being executed, the
communication thread cannot progress any other communication
by e.g. matching an incomingmessage to a posted receive, preparing
additionalActivatemessages to be processed, etc. Thus the latency
of communications is greater than might otherwise be possible.

5 REDUCING COMMUNICATION LATENCY

5.1 Lightweight Communication Interface

The Lightweight Communication Interface [30] is designed explic-
itly to be consumed by libraries and frameworks, rather than by
applications directly. It has been influenced by features provided
by the InfiniBand verbs interface and mid-level communication
libraries such as OFI [17] and UCX [28]. The primary goal is to be
lightweight and support a reasonably high-level interface with fea-
tures that can be supported directly by underlying communication
hardware while not providing features that are better implemented
by the high-level runtimes we target, such as datatype or serial-
ization support. LCI is intended to, as directly as possible, support
the communication requirements of dynamic runtimes, so as to
avoid multiple layers of abstraction. Direct control of polling and
progress is provided, as is efficient support for large numbers of
concurrent threads and communications.

Communication calls in LCI are non-blocking: they either suc-
ceed or return a failure code indicating that there are insufficient
resources to execute the requested operation and that the caller
must progress existing communications before resubmitting the re-
quest. This allows the communication library to exert back-pressure
on the application runtime, ensuring that it does not become over-
loaded. Communication completion can be signaled directly via a
synchronizer object—roughly analogous to an MPI request in that
it can be tested or waited on for completion—or dynamically with
a completion queue or handler function. Execution runtimes using
lightweight threads [27, 32] may opt to use synchronizers to eas-
ily unblock threads waiting on communications [12], while those
using a centralized communication mechanism may prefer to poll
completion queues or use an active message handler. LCI exposes
three communication protocols for use by consuming runtimes:

Immediate short messages about the size of a cache line that can
be sent inline from the user buffer

Buffered medium messages consisting of a few pages that are
copied to pre-registered internal buffers

Direct long messages of any length that are sent via RDMA, using
a rendezvous protocol if necessary

These are similar to protocols available in GASNet [2] or UCX [28]
and allow the runtime to choose the appropriate size—for instance,
a control message could be sent using the Immediate or Buffered



Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication Engine ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

protocols, while data could be sent using Buffered or Direct pro-
tocols. Needless to say, which is appropriate for what use case
depends on the runtime, and may be dynamic in nature.

5.2 Latency Reduction Techniques

There are several features available in LCI that fit the needs of the
PaRSEC communication infrastructure and reduce communication
latency or contention. The ability to dynamically respond to incom-
ing messages via completion queues or handlers alleviates the need
to poll individual communications as is necessary in the MPI back-
end. This fits in well with the design of the communication thread
in PaRSEC, which can poll for any completed communications and
handle them dynamically rather than needing to test each one in an
array. The explicit progress call also avoids a source of congestion
seen in the MPI backend where long active message callbacks pre-
vent progress on communications. By putting the progress call on
a separate thread or by judicious insertion of progress calls inside
active message callbacks, we can prevent this undesired behavior.

Explicit protocol selection also lets PaRSEC make the correct
choice of what protocol to use for Activate and Get Data mes-
sages versus what to use for the put operation. Additionally, LCI
lets the user specify that buffers are dynamically allocated at the
receiver; this is particularly useful for active messages, avoiding the
need to probe for incoming messages followed by an allocation and
explicit receive, or using a limited number of persistent receives
that are re-enabled after completion.

5.3 LCI Backend for PaRSEC

5.3.1 Communication Progress. In contrast to the MPI backend,
the LCI backend divorces progress on existing communications
from executing the callbacks for active messages and starting new
communications. This is possible due to the explicit progress call
provided by LCI. In addition to the communication thread described
in Section 4.3, the LCI backend spawns what we term a “progress
thread” which is dedicated to calling the LCI_progress function.
This thread is responsible for draining hardware completion queues,
matching incoming messages with posted receives, responding to
rendezvous protocol ready-to-send messages, executing user-level
completion handlers, and refilling hardware receive queues.

By using a separate thread for these duties, we ensure that active
message completion callbacks do not block progress on independent
data transfers. While dedicating a CPU core to this job means that
we lose computing capability, modern platforms can have hundreds
of cores so any such loss is minor—on our experimental platform
it is less than 1%—while the benefit of reduced communication
latencies for both active messages and bulk data transport allows
for a reduction in wasted idle time on worker threads and thereby
improves overall performance.

5.3.2 Active Messages. The LCI backend for PaRSEC maintains a
hash table that maps active message tags to callback handles. The
callback handles contain the information necessary to execute an
active message callback, such as the callback function pointer and
the local callback data. Registering an active message tag simply
inserts the relevant entry into the table.

Sending an active message is done using the LCI Immediate
or Buffered communication calls, depending on the length of the

message, so that all active messages are sent eagerly. This places
an upper limit on the amount of data an active message can carry
of about 12 KiB in the current implementation, but this is sufficient
for the active messages utilized in PaRSEC. Buffers for receiving
the active message are allocated dynamically by the LCI runtime
from a PaRSEC memory pool at the destination. The destination
does not need to post a corresponding receive or perform any sort
of message matching.

After a message arrives at its destination, LCI invokes a handler
function that looks up the active message handle from the message
tag. A callback handle is allocated from a memory pool and filled
with information specific to the active message, such as the buffer,
rank of the source process, and callback function. The callback
handle is then pushed to a shared FIFO queue to be consumed by
the communication thread.

5.3.3 Data Transport. Bulk data transport is currently implemented
aswith theMPI backend, emulating a one-sided put using two-sided
communications. The origin process sends a handshake message to
the target telling it where data is to be received and what tag to use.
Unlike the MPI backend, the active message infrastructure isn’t
used directly, but rather a specialized version of it is used; this lets
us bypass operations such as the hash table tag lookup that would
otherwise be required. This handshake contains the target address,
the size of message data, the remote completion callback, the size of
callback data, and the callback data itself. The tag of the handshake
message encodes what tag is to be used for the communication.
Depending on the size of the handshake message, it is sent using
the LCI Immediate or Buffered communication calls.

The message data is then sent using the LCI Direct communica-
tion call. As in the MPI backend, since each tuple of ⟨Origin, Tag⟩
will be unique, MPI-style inter-message ordering is not required. A
callback handle is allocated at the origin and filled with information
regarding the ongoing communication, the local completion call-
back function, and its arguments. When the send completes, LCI
will invoke a handler function that will push this callback handle to
a shared FIFO queue to be consumed by the communication thread.

As an additional optimization, if the message data is sufficiently
small, then it can be sent eagerly inside the handshake message.
If the data was sent eagerly thus, a separate data communication
is unnecessary and the local completion callback at the origin is
called immediately.

At the target, when the handshake message arrives a handler
function is invoked. The handler allocates a callback handle and
fills it. It then attempts to start the Direct receive to match with
the send at the origin. Since LCI allows this to fail with a “retry”
error for any number of reasons, such as insufficient hardware
resources, this must be handled appropriately. Since this is executed
on the progress thread, we cannot simply retry until sufficient
resources have been freed; nor can we invoke the LCI progress
function to ensure progress without encountering severe issues
with recursion. The solution is to delegate starting the matching
receive to the communication thread in cases where the receive
could not be immediately started by the progress thread. In most
cases, except when the communication system is under significant
pressure, this does not occur, allowing us to reduce the latency
and match messages sooner. Once the posted receive completes, a



ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Omri Mor, George Bosilca, and Marc Snir

Table 1: SDSC Expanse hardware and software configuration.

Hardware Software

CPU 2× AMD EPYC 7742 OS Rocky Linux 8.5
Cores 128 @ 2.25 GHz Kernel Linux 4.18.0-348.23.1

Memory 256 GiB DDR4 Compiler AOCC 3.0.0
Storage 1TB local PCIe; Lustre rdma-core 50mlnx1-1.49417

NIC Mellanox ConnectX-6 MPI Open MPI 4.1.5
Network 2× HDR InfiniBand Backend UCX 1.14.0
Topology Hybrid Fat-Tree LAPACK Intel MKL 2019.5.281

completion handler is called in the LCI progress function. Similarly
to the handler at the origin, the callback handle is pushed to the
shared FIFO queue.

5.3.4 Completion Callback Progress. Progress on existing commu-
nications is handled solely by the progress thread. This leaves the
communication thread the job of starting and completing commu-
nications. So as to ensure a level of fairness between processing
completion callbacks for active messages and bulk data, we use sep-
arate FIFO queues for these types of communication. We remove
up to five completion handlers from the active message queue, pro-
cessing each of them in turn, followed by all available completion
handlers in the bulk data queue. If any completions were processed
this way, we loop, until no communications could be completed,
after which we return control to the higher-level PaRSEC runtime.

6 PERFORMANCE RESULTS AND ANALYSIS

6.1 Experimental Setup

6.1.1 System Configuration. Performance results were gathered
on the SDSC Expanse cluster. Each node has two sockets of AMD
EPYC 7742 CPUs, each with 64 cores, for a total of 128 cores per
node with 256 GiB memory. Nodes are connected to switches with
2 links of 50 Gbps HDR InfiniBand using a hybrid fat-tree topology.
Additional system configuration details are shown in Table 1.

6.1.2 PaRSEC Configuration. For all tests with multiple nodes, we
configure PaRSEC so that one core is dedicated to the communi-
cation thread and, for the LCI backend, another to the progress
thread, as described in Sections 4.3 and 5.3. These are pinned to
cores in the NUMA domain where the Mellanox ConnectX-6 NIC
is attached. This is done to reduce communication latency: tests
with free-floating communication and progress threads showed up
to a 25% increase in mean end-to-end latency for communications
as compared to using dedicated cores. All remaining cores are used
for worker threads, so that MPI-based executions use 127 worker
threads and LCI-based ones use 126. In single-node runs we use all
the 128 cores for computation. Unless otherwise stated, we funnel
Activate messages through the communication thread in addition
to data transport.

For MPI support, we use Open MPI [16] with the ucx PML
module. The default UCX parameters are used, with the excep-
tion of explicitly selecting the network device to use and setting
UCX_UNIFIED_MODE, which increased and stabilized performance
in some tests. We also set UCX_IB_RCACHE_MAX_REGIONS to a fixed
limit; we found that using the default setting of uncapped cached

registrations could breach the number of registrations allowed by
the hardware under some scenarios, leading to a crash.

We have made available the versions of LCI1 and PaRSEC2 used
in this paper. In Section 6.4 we demonstrate results with HiCMA4,
which depends on DPLASMA3 [3].

6.1.3 Methodology. Measurements in Sections 6.2 and 6.3 were
measured by running 18 executions in succession, discarding the
first three, and computing the mean of the remaining 15 execu-
tions; we had observed that there was a significant difference be-
tween performance in the first three runs and the subsequent ones.
Measurements in Section 6.4 were measured from a mean of five
executions in succession.

In several experiments, we measure inter-node communication
latency. To accurately obtain these measurements, we synchronize
clocks with an algorithm adapted from [18]. We re-synchronize
clocks at the beginning of every PaRSEC context execution epoch
so as to prevent clock drift across several runs.

6.2 Ping-Pong Bandwidth

We utilize a task-based windowed ping-pong bandwidth micro-
benchmark in PaRSEC to compare the performance of the MPI
backend and the new LCI backend. Each PingPong(𝑡, 𝑓 , 𝑐) task op-
erates on a fragment 𝑓 of size 𝑁 . 𝑡 defines the current iteration of
the benchmark and the number of fragments defines the window
size. Between each iteration, a synchronization task Sync(𝑡) exe-
cutes to force serialization. PingPong tasks execute round-robin
between nodes, such that data communications occur—when run-
ning on two nodes, this results in the data traveling back and forth
between them on the network. A number of independent “streams”
can be started, beginning execution round-robin across the nodes,
such that if 𝑃 streams are started, where 𝑃 is the number of nodes,
then all nodes must send and receive data concurrently for each
iteration 𝑡 . 𝑐 defines the stream of a PingPong task.

To demonstrate the efficacy of LCI in allowing PaRSEC to scale to
smaller task sizes, we vary the size of each fragment between 8 MiB
at 8 KiB while increasing the window size from 32 to 32,768 so as to
keep the total amount of data in each iteration constant at 256 MiB.
Since the PaRSEC runtime core is unchanged, the task management
overhead must be identical, so differences in performance must be
due to communication management.

Performance results with one stream are shown in Figure 2a. We
compare PaRSEC bandwidth results to NetPIPE [29] as a baseline for
ping-pong bandwidth on an InfiniBand cluster. We see that when
tasks are coarse-grained, both PaRSEC backends are able to achieve
peak bandwidth, but that as tasks become smaller and greater in
number, performance decreases. However, LCI maintains near-peak
performance at smaller granularity than the MPI backend and is
able to support smaller task sizes more efficiently: while the MPI
backend drops to 62.5 Gbit/s at 128 KiB and to 45.2 Gbit/s at 90.5 KiB
the performance of the LCI backend is reduced to 64.1 Gbit/s only
at a granularity of 45.25 KiB and to 43.5 Gbit/s at 32 KiB, supporting
tasks about 2.83 times smaller at a similar efficiency.

1https://github.com/uiuc-hpc/LC/releases/tag/icpp23
2https://github.com/uiuc-hpc/parsec/releases/tag/icpp23
3https://github.com/uiuc-hpc/dplasma/releases/tag/icpp23
4https://github.com/uiuc-hpc/hicma-parsec/releases/tag/icpp23

https://github.com/uiuc-hpc/LC/releases/tag/icpp23
https://github.com/uiuc-hpc/parsec/releases/tag/icpp23
https://github.com/uiuc-hpc/dplasma/releases/tag/icpp23
https://github.com/uiuc-hpc/hicma-parsec/releases/tag/icpp23


Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication Engine ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

16 KiB 64 KiB 256 KiB 1 MiB 4 MiB
Granularity

0 Gbit/s

20 Gbit/s

40 Gbit/s

60 Gbit/s

80 Gbit/s

100 Gbit/s

B
an

dw
id

th

LCI
Open MPI
NetPIPE

(a) One Stream

16 KiB 64 KiB 256 KiB 1 MiB 4 MiB
Granularity

0 Gbit/s

40 Gbit/s

80 Gbit/s

120 Gbit/s

160 Gbit/s

200 Gbit/s

B
id

ire
ct

io
na

l B
an

dw
id

th

LCI
Open MPI
LCI (no sync)
Open MPI (no sync)

(b) Two Streams

Figure 2: PaRSEC bandwidth benchmarks. With two streams, performance with large tasks is decreased due to a queuing effect

that is eliminated by removal of inter-iteration synchronization.

16 KiB 64 KiB 256 KiB 1 MiB 4 MiB
Granularity

10 GFLOP/s

100 GFLOP/s

1 TFLOP/s

10 TFLOP/s

P
er

fo
rm

an
ce

LCI
Open MPI
No Overlap
Roofline

Figure 3: Overlap benchmark with GEMM-like intensity.

Bidirectional bandwidth results are in Figure 2b. We see that
similarly to the one-stream case, the LCI backend can scale more
efficiently to a smaller task granularity. Performance results with
large message sizes are somewhat surprising, as we would expect
that it is easier to achieve peak bandwidth with larger messages.
We attribute this reduction in performance to a queuing phenom-
enon where, due to the aforementioned synchronization and the
small number of fragments, one stream can overtake the other and
both streams end up traveling together, so that each node is either
only sending or receiving at any given point in time. By loosening
the synchronization requirement so that the data for the next it-
eration can be sent while the prior iteration is still executing, we
find that we recover the “lost” performance, with both backends
able to achieve near-peak bidirectional bandwidth. However, the
reduction in inter-iteration synchronization results in an increase
in the number of Activate messages, as fewer are aggregated as
described in Section 4.3; this increase is particularly notable for fine-
grained tasks, so that less network bandwidth is available for data
movement as compared to the tightly-synchronized benchmark.

6.3 Computation/Communication Overlap

We next consider how efficiently PaRSEC is able to overlap compu-
tations for independent tasks and communications for future tasks.
For this purpose, we use a variant of the bandwidth benchmark
described in Section 6.2 with the ability to execute a configurable

number of double-precision floating-point multiply-accumulate
operations on each 8-byte portion of the fragment belonging to a
Ping-Pong task. By allowing the intensity to be configurable, we
can independently vary the time required to execute each task and
the amount of data each task operates on and that therefore must
be communicated per iteration.

For the overlap test, we consider tasks with a compute intensity
similar to GEMM. A GEMM executes 𝑁 3 FMA operations for 𝑁 2

elements, so there are 𝑁 operations per element. To achieve a
similar intensity, a Ping-Pong task operating on 𝑀 bytes must
execute

√︁
𝑀/8 FMA operations per 8 bytes. To ensure that the same

total number of FLOPs are executed regardless of task granularity
and number of fragments, we increase the number of iterations to
compensate for the decreased intensity of each task. This means
that while the amount of data and the number of FLOPs are constant,
the amount of data moved across the network increases as the task
granularity decreases. This trade-off is comparable to those in many
real applications: smaller task size decreases the computation-to-
communication ratio. To increase the likelihood of overlap, we
remove the Sync task described in the prior section.

Figure 3 shows the performance results for overlapping tasks
with GEMM-like intensity with communications. The “Roofline”
curve simulates performance assuming that communication is en-
tirely overlapped with computation, while “No Overlap” simulates
performance assuming that no communication can execute con-
currently with computation. When tasks are large, performance
is limited by the number of tasks that can be executed in paral-
lel. Since we retain the 256 MiB total data used in the bandwidth
benchmarks, when fragments are 8 MiB in size there are only 32
tasks that can be executed in each iteration per stream. As tasks
decrease in size, but increase in number, performance begins to be
limited by the computing performance of the system. Then as task
size decreases further, the network bandwidth begins bounding
performance. Once the task size has grown sufficiently small, the
MPI backend begins to struggle to move the data fast enough, while
the LCI backend continues to keep pace with the shrinking data size.
At the 128 KiB fragment size, the LCI backend is able to achieve
over twice the performance of the MPI backend, while at 32 KiB it
is an order of magnitude faster.



ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Omri Mor, George Bosilca, and Marc Snir

600048004500360030002400180015001200
Tile Size

10
12
14
16
18
20
22
24
26

Ti
m

e 
(s

)

LCI
Open MPI

(a) Time-to-solution.

600048004500360030002400180015001200
Tile Size

0
10
20
30
40
50
60
70

La
te

nc
y 

(m
s)

LCI
Open MPI
LCI (multithreaded)
Open MPI (multithreaded)

(b) End-to-end communication latency.

Figure 4: TLR Cholesky, N = 360,000, 16 nodes, scaling tile size from 6000 × 6000 to 1200 × 1200. Latency is measured from send

of the Activate message to arrival of data for individual flows. “MT” indicates that communication multi-threading for

Activatemessages is enabled.

6.4 HiCMA

6.4.1 Background. Sparse linear algebra is an important HPC appli-
cation domain where application performance is often sensitive to
communication. We experiment with HiCMA, a tile-based low-rank
Cholesky approximation code that is used in applications such as
geostatistical modeling [6]. HiCMA first compresses off-band tiles
of a large matrix to a low-rank representation while maintaining a
specified accuracy threshold, then uses PaRSEC to orchestrate the
execution of a task-based Cholesky factorization where kernels can
operate directly on the low-rank tile format. Additional details on
the operation of HiCMA are available at [7, 8].

HiCMA poses several unique challenges to a dynamic runtime.
The compute kernels are regular in their data access pattern as is
the overall structure of the task graph, but the low-rank GEMM
kernels that make up the bulk of the tasks are far less compute-
intense than traditional GEMM kernels. When there are sufficiently
many tasks—which is to say, that tiles are sufficiently small—there
should always be enough parallelism to ensure that cores are not
idle. However, decreasing the tile size also somewhat decreases the
resulting tasks’ already-low compute intensity, so that if tasks are
too small, moving data fast enough to ensure that ready tasks are
always available becomes a significant bottleneck to performance.

Additionally, message sizes can vary widely. Dense tiles on the
diagonal band are very large and can easily saturate network band-
width alone, while low-rank tiles far from the diagonal can see their
rank drop to 1, so that they may be only a few tens of kilobytes
in size. With each tile having a different rank, and the inherent
dynamism of the PaRSEC runtime, significant pressure is asserted
against the communication backend to ensure data is delivered in a
timely manner. The key element to achieving the best performance
is guaranteeing that data for the “critical path” tasks that are direct
predecessors of the panel operations on the dense diagonal tiles
arrives without delay, so that maximum parallelism is maintained.

6.4.2 Tile Scaling. We first consider how changing task granularity
affects performance while keeping the number of nodes constant.
As described above, there are several factors working against achiev-
ing the best possible performance at all tile sizes. If tiles are too

large, there may be too few tasks to saturate all cores. For instance,
for matrix size 360,000 × 360,000, at a tile size of 6000 × 6000, there
are 60 tiles per dimension, for 1770 tiles in total, on which oper-
ate 37,820 tasks. However, only a fraction of them can execute in
parallel—about 630 or so. If we were to scale with this tile size to
even a few nodes, we would have many cores idle due to a lack of
parallelism. However, at the other extreme, while there is sufficient
task parallelism, the runtime may struggle to move the data fast
enough to ensure that tasks can begin execution. It is clear that
the best performance will be obtained at some midpoint between
these two and achieving best performance at a smaller tile size is
an indication of better scalability.

Figure 4 demonstrates this principle. We run the HiCMA st-2d-
sqexp problem type on a matrix of size 360,000× 360,000 at varying
tile sizes between 6000×6000 and 1200×1200 usingmaxrank = 150
and a fixed accuracy of 10−8 with a band size of 1 and using the
two-flow HiCMA algorithm [7, 8]. We quickly see in Figure 4a that,
as anticipated, using a large tile size has reduced performance due
to insufficient parallelism. We also observe that LCI is able to obtain
a lower time-to-solution at all tile sizes, demonstrating the efficacy
of reducing communication latency. As expected, this improvement
diminishes at larger tile sizes, as communications are larger and
their latency is predominantly bound by the network hardware, so
reducing software overheads has less impact on time-to-solution.

Figure 4b shows the average end-to-end latency, as measured
from when an Activate message is sent following task completion
until the data arrives at the destination, taking into account the
entire multicast tree. LCI achieves a lower mean end-to-end latency
at every tile size, tracking closely with the behavior of the overall
time-to-solution, particularly at the very small tile sizes where the
communication backend must handle sending very many small
tiles: the average rank is 10.44, so tiles in packed 𝑈 × 𝑉 format
consume about 196 KiB of memory on average—and the largest
low-rank tile is only 544 KiB, with a rank of 29.

6.4.3 Communication Multithreading. Figure 4b also shows the ef-
fect on mean communication latency when enabling multithreaded



Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication Engine ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

1 2 4 8 16 32
Nodes

10
12
14
16
18
20
22
24

Ti
m

e 
(s

)

LCI
Open MPI
Open MPI (best)

(a) Time-to-solution.

2 4 8 16 32
Nodes

6
10
14
18
22
26
30
34
38
42

La
te

nc
y 

(m
s)

LCI
Open MPI
Open MPI (best)

(b) End-to-end communication latency.

Figure 5: TLR Cholesky, N = 360,000, scaling number of nodes from 1 to 32. Tile size is decreased while scaling to ensure

sufficient parallelism. “Open MPI (best)” indicates where achieving best performance with Open MPI required coarsening tasks

by increasing tile size. Latency is measured from send of the Activatemessage to arrival of data for individual flows.

Table 2: Tile Size with Lowest Time-to-Solution.

Nodes 1 2 4 8 16 32

Open MPI 4500 4500 3600 3000 3000 3000
LCI 4500 4500 3600 3000 2400 1800

communication support in PaRSEC. This support allows comput-
ing threads to send Activate messages themselves rather than
delegating to the communication thread. While using this multi-
threading support disables aggregation of such messages, it also
significantly reduces the latency of communications when using
the LCI backend: the mean latency of individual messages in the
multicast is reduced by up to 63%, and end-to-end latency is reduced
by up to 46%. This translates into a 10% speedup in time-to-solution
for the 1200 tile size, from 16.384 to 14.839 seconds. For the best-
performing 2400 tile size, communication multithreading results in
a 3% improvement in overall performance, reducing the running
time to 10.516 seconds.

When using the MPI backend, communication performance is
generally neutral or negatively impacted. The most significant im-
provement is at the 1200 tile size, which saw a 18% reduction in
latency from the direct multicast predecessor and a 12% reduction
in end-to-end latency from the multicast root. Other tile sizes saw
no significant change.

6.4.4 Strong Scaling. We use the same 𝑁 = 360,000 problem size
and perform a strong scaling test, keeping the total work constant
while increasing the number of nodes. Results are reported in Fig-
ure 5. Tile sizes where LCI and Open MPI achieved the best time-
to-solution are reported in Table 2. When using fewer nodes, using
larger tiles is optimal; but as the number of compute cores increases,
the number of tasks must also increase to maintain sufficient par-
allelism, necessitating a decrease in the tile size. In Figure 5a we
report the time-to-solution for two sets of tile sizes when using
Open MPI: the same tile size where LCI achieved the best perfor-
mance and the best-performing tile size for Open MPI. Because

the LCI backend is able to obtain better bandwidth and latency for
smaller data, we are able to scale to smaller tile sizes and a greater
node count.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we have presented evidence that widely-used com-
munication substrates such as MPI are ill-suited to achieving the
best performance in dynamic runtimes. We present an improved de-
sign for a Lightweight Communication Interface that more closely
matches the needs of asynchronous tasking runtimes and demon-
strate how we integrate it with the new PaRSEC communication
API. To determine the efficacy of our approach, we highlighted
improvements in several areas. First, we demonstrated improved
small-task bandwidth in PaRSEC, allowing the use of tasks nearly
three times smaller with similar efficiency. Next, we showed how
we can achieve better overlap between computations and commu-
nications, resulting in performance over one order of magnitude
faster than with the MPI backend. Finally, we extended these ap-
proaches to a state-of-the-art TLR Cholesky factorization, where
we demonstrated that using the LCI backend was able to reduce
mean end-to-end latency for communications by over 50%, result-
ing in a net speedup in time-to-solution of 12%. For future work,
we plan on introducing new features to LCI that can directly im-
plement the PaRSEC put interface and examining the benefits of
using multiple communication or progress threads to further reduce
communication latency in highly-loaded scenarios. We also would
like to examine opportunities for closer integration between dy-
namic runtimes and LCI, leveraging abilities to quickly enable tasks
or lightweight threads, or executing high-priority short-duration
tasks in the context of the progress thread. This would enable new
classes of applications that are currently bottlenecked by task run-
time overheads.

ACKNOWLEDGMENTS

This research was supported by NSF grants 1908144 and 1909015.
This work used the Expanse system at the SanDiego Supercomputer
Center through ACCESS allocation CCR130058.



ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Omri Mor, George Bosilca, and Marc Snir

REFERENCES

[1] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In 2012 International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC12). IEEE/ACM, 1–11. https://doi.org/10.1109/SC.2012.71

[2] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. In Languages and Compilers for
Parallel Computing: 31st International Workshop (LCPC 2018). Springer, 138–158.
https://doi.org/10.1007/978-3-030-34627-0_11

[3] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Az-
zam Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier,
Hatem Ltaief, Piotr Luszczek, Asim YarKhan, and Jack Dongarra. 2011. Flex-
ible Development of Dense Linear Algebra Algorithms on Massively Paral-
lel Architectures with DPLASMA. In 25th IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW 2011). IEEE, 1432–1441.
https://doi.org/10.1109/IPDPS.2011.299

[4] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Herault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science & Engineering 15, 6 (Nov. 2013), 36–45.
https://doi.org/10.1109/MCSE.2013.98

[5] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre
Lemarinier, and Jack Dongarra. 2012. DAGuE: A generic distributed DAG engine
for High Performance Computing. Parallel Comput. 38, 1 (Jan. 2012), 37–51.
https://doi.org/10.1016/j.parco.2011.10.003

[6] Qinglei Cao, Sameh Abdulah, Rabab Alomairy, Yu Pei, Pratik Nag, George
Bosilca, Jack Dongarra, Marc G. Genton, David E. Keyes, Hatem Ltaief, and
Ying Sun. 2022. Reshaping Geostatistical Modeling and Prediction for Extreme-
Scale Environmental Applications. In 2022 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC22). IEEE, 1–12.
https://doi.org/10.1109/SC41404.2022.00007

[7] Qinglei Cao, Yu Pei, Kadir Akbudak, George Bosilca, Hatem Ltaief, David
Keyes, and Jack Dongarra. 2021. Leveraging PaRSEC Runtime Support to
Tackle Challenging 3D Data-Sparse Matrix Problems. In 35th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2021). IEEE, 79–89.
https://doi.org/10.1109/IPDPS49936.2021.00017

[8] Qinglei Cao, Yu Pei, Kadir Akbudak, Aleksandr Mikhalev, George Bosilca, Hatem
Ltaief, David Keyes, and JackDongarra. 2020. Extreme-Scale Task-Based Cholesky
Factorization Toward Climate and Weather Prediction Applications. In Platform
for Advanced Scientific Computing Conference (PASC ’20). ACM, 1–11. https:
//doi.org/10.1145/3394277.3401846

[9] Franck Cappello, Amina Guermouche, and Marc Snir. 2010. On Communication
Determinism in Parallel HPC Applications. In 19th International Conference on
Computer Communications and Networks (ICCCN 2010). IEEE, 1–8. https://doi.
org/10.1109/ICCCN.2010.5560143

[10] Jaemin Choi, Zane Fink, Sam White, Nitin Bhat, David F. Richards, and
Laxmikant V. Kalé. 2021. GPU-aware Communication with UCX in Parallel
Programming Models: Charm++, MPI, and Python. In 35th IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW 2021). IEEE,
479–488. https://doi.org/10.1109/IPDPSW52791.2021.00079

[11] Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli Dryden,
Andrew Lenharth, Loc Hoang, Keshav Pingali, and Marc Snir. 2018. A Light-
weight Communication Runtime for Distributed Graph Analytics. In 32nd IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2018). IEEE,
980–989. https://doi.org/10.1109/IPDPS.2018.00107

[12] Hoang-Vu Dang, Marc Snir, and William Gropp. 2016. Towards millions of
communicating threads. In 23rd European MPI Users’ Group Meeting (EuroMPI
2016). ACM, 1–14. https://doi.org/10.1145/2966884.2966914

[13] Hoang-Vu Dang, Marc Snir, and William Gropp. 2017. Eliminating contention
bottlenecks in multithreaded MPI. Parallel Comput. 69 (Nov. 2017), 1–23. https:
//doi.org/10.1016/j.parco.2017.08.003

[14] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: a communication-
optimizing substrate for distributed heterogeneous graph analytics. In 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2018). ACM, 752–768. https://doi.org/10.1145/3192366.3192404

[15] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Vishwesh Jatala, Keshav Pingali,
V. Krishna Nandivada, Hoang-Vu Dang, and Marc Snir. 2019. Gluon-Async: A
Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analyt-
ics. In 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT 2019). IEEE, 15–28. https://doi.org/10.1109/PACT.2019.00010

[16] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users’ Group Meeting. Springer, 97–104.
https://doi.org/10.1007/978-3-540-30218-6_19

[17] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D. Russell, Howard
Pritchard, and Jeffrey M. Squyres. 2015. A Brief Introduction to the OpenFabrics
Interfaces - A New Network API for Maximizing High Performance Application
Efficiency. In 2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects. IEEE, 34–39. https://doi.org/10.1109/HOTI.2015.19

[18] Sascha Hunold and Alexandra Carpen-Amarie. 2018. Hierarchical Clock Syn-
chronization in MPI. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 325–336. https://doi.org/10.1109/CLUSTER.2018.00050

[19] Hartmut Kaiser, Patrick Diehl, Adrian S. Lemoine, Bryce Adelstein Lelbach,
Parsa Amini, Agustín Berge, John Biddiscombe, Steven R. Brandt, Nikunj Gupta,
Thomas Heller, Kevin Huck, Zahra Khatami, Alireza Kheirkhahan, Auriane
Reverdell, Shahrzad Shirzad, Mikael Simberg, Bibek Wagle, Weile Wei, and
Tianyi Zhang. 2020. HPX - The C++ Standard Library for Parallelism and
Concurrency. Journal of Open Source Software 5, 53 (Sept. 2020), 2352. https:
//doi.org/10.21105/joss.02352

[20] Laxmikant V. Kalé and Sanjeev Krishnan. 1993. CHARM++: a portable concurrent
object oriented system based on C++. In 8th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’93). ACM, 91–108.
https://doi.org/10.1145/165854.165874

[21] Sameer Kumar, Yanhua Sun, and Laximant V. Kalé. 2013. Acceleration of an
Asynchronous Message Driven Programming Paradigm on IBM Blue Gene/Q.
In 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2013). IEEE, 689–699. https://doi.org/10.1109/IPDPS.2013.83

[22] MPI Forum. 1993. MPI: a message passing interface. In 1993 ACM/IEEE Conference
on Supercomputing (SC93). ACM, 878–883. https://doi.org/10.1145/169627.169855

[23] MPI Forum. 2021. MPI: A Message-Passing Interface Standard Version 4.0. https:
//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[24] Thananon Patinyasakdikul, David Eberius, George Bosilca, and Nathan Hjelm.
2019. Give MPI Threading a Fair Chance: A Study of Multithreaded MPI Designs.
In 2019 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
1–11. https://doi.org/10.1109/CLUSTER.2019.8891015

[25] Joseph Schuchart, Christoph Niethammer, José Gracia, and George Bosilca. 2021.
Quo Vadis MPI RMA? Towards a More Efficient Use of MPI One-Sided Commu-
nication. https://doi.org/10.48550/arXiv.2111.08142

[26] Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, and
George Bosilca. 2021. Callback-based completion notification using MPI Con-
tinuations. Parallel Comput. 106 (Sept. 2021), 102793. https://doi.org/10.1016/j.
parco.2021.102793

[27] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca,
Alex Brooks, Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault,
Shintaro Iwasaki, Prateek Jindal, Laxmikant V. Kalé, Sriram Krishnamoorthy,
Jonathan Lifflander, Huiwei Lu, Esteban Meneses, Marc Snir, Yanhua Sun, Kenjiro
Taura, and Pete Beckman. 2018. Argobots: A Lightweight Low-Level Threading
and Tasking Framework. IEEE Transactions on Parallel and Distributed Systems
29, 3 (March 2018), 512–526. https://doi.org/10.1109/TPDS.2017.2766062

[28] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B. Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L. Graham,
Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald Becker, Dun-
can Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George Bosilca, and
Aurelien Bouteiller. 2015. UCX: An Open Source Framework for HPC Network
APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects. IEEE, 40–43. https://doi.org/10.1109/HOTI.2015.13

[29] Quinn O. Snell, Armin R. Mikler, and John L. Gustafson. 1995. NetPIPE: A
Network Protocol Independent Performance Evaluator. In 1995 IASTED Interna-
tional Conference on Intelligent Information Management and Systems (IIMS 1995).
IASTED/ACTA, 1–6.

[30] Marc Snir, Hoang-Vu Dang, Omri Mor, and Jiakun Yan. 2023. LCI: A Lightweight
Communication Interface v1.7. https://github.com/uiuc-hpc/LC/blob/icpp23/
doc/LCI.pdf

[31] Yanhua Sun, Gengbin Zheng, Laximant V. Kalé, Terry R. Jones, and Ryan Olson.
2012. A uGNI-based Asynchronous Message-driven Runtime System for Cray
Supercomputers with Gemini Interconnect. In 26th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2012). IEEE, 751–762. https://doi.
org/10.1109/IPDPS.2012.127

[32] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. 2008. Qthreads: An API
for programming with millions of lightweight threads. In 22nd IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2008). IEEE, 1–8. https:
//doi.org/10.1109/IPDPS.2008.4536359

https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/978-3-030-34627-0_11
https://doi.org/10.1109/IPDPS.2011.299
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1109/SC41404.2022.00007
https://doi.org/10.1109/IPDPS49936.2021.00017
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1109/ICCCN.2010.5560143
https://doi.org/10.1109/ICCCN.2010.5560143
https://doi.org/10.1109/IPDPSW52791.2021.00079
https://doi.org/10.1109/IPDPS.2018.00107
https://doi.org/10.1145/2966884.2966914
https://doi.org/10.1016/j.parco.2017.08.003
https://doi.org/10.1016/j.parco.2017.08.003
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1109/PACT.2019.00010
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1109/CLUSTER.2018.00050
https://doi.org/10.21105/joss.02352
https://doi.org/10.21105/joss.02352
https://doi.org/10.1145/165854.165874
https://doi.org/10.1109/IPDPS.2013.83
https://doi.org/10.1145/169627.169855
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1109/CLUSTER.2019.8891015
https://doi.org/10.48550/arXiv.2111.08142
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1109/HOTI.2015.13
https://github.com/uiuc-hpc/LC/blob/icpp23/doc/LCI.pdf
https://github.com/uiuc-hpc/LC/blob/icpp23/doc/LCI.pdf
https://doi.org/10.1109/IPDPS.2012.127
https://doi.org/10.1109/IPDPS.2012.127
https://doi.org/10.1109/IPDPS.2008.4536359
https://doi.org/10.1109/IPDPS.2008.4536359

	Abstract
	1 Introduction
	2 Background
	2.1 Communication in Dynamic Runtimes
	2.2 Strong Scaling

	3 Related Work
	4 PaRSEC Communication
	4.1 The PaRSEC Communication Engine
	4.2 MPI Backend
	4.3 The PaRSEC Communication Thread

	5 Reducing Communication Latency
	5.1 Lightweight Communication Interface
	5.2 Latency Reduction Techniques
	5.3 LCI Backend for PaRSEC

	6 Performance Results and Analysis
	6.1 Experimental Setup
	6.2 Ping-Pong Bandwidth
	6.3 Computation/Communication Overlap
	6.4 HiCMA

	7 Conclusions and Future Work
	Acknowledgments
	References

