
Fault prediction under the microscope:
A closer look into HPC systems

Ana Gainaru
Computer Science Department

NCSA, UIUC, Urbana, IL, USA
againaru@illinois.edu

Franck Cappello
INRIA, France

UIUC, Urbana, IL, USA
fci@lri.fr

Marc Snir
MCS, Argonne National Lab

IL, USA
snir@mcs.anl.gov

William Kramer
NCSA, UIUC, Urbana, IL, USA

wkramer@ncsa.illinois.edu

Abstract—A large percentage of computing capacity in today’s
large high-performance computing systems is wasted due to
failures and recoveries. As a consequence current research is
focusing on providing fault tolerance strategies that aim to mini-
mize fault’s effects on applications. By far, the most popular and
used technique is the checkpoint-restart strategy. A complement
to this classical approach is failure avoidance, by which the
occurrence of a fault is predicted and preventive measures are
taken. For this, monitoring systems require a reliable prediction
system to give information on what will be generated by the
system and at what location. Thus far, research in this field used
ideal predictors that were not implemented in real HPC systems.

In this paper, we merge signal analysis concepts with data min-
ing techniques to extend the ELSA (Event Log Signal Analyzer)
toolkit and offer an adaptive and overall more efficient prediction
module. Our goal is to provide models that characterize the
normal behavior of the system and the way faults affect it. Being
able to detect deviations from normality quickly is the foundation
of accurate fault prediction. However, this is challenging because
component failure dynamics are heterogeneous in space and
time. To this end, a large part of the paper is focused on a
detailed analysis of the prediction method, by applying it to two
large-scale systems and by investigating the characteristics and
bottlenecks of each step of the prediction process. Furthermore,
we analyze the prediction’s precision and recall impact on current
checkpointing strategies and highlight future improvements and
directions for research in this field.

Index Terms—fault tolerance; large-scale HPC systems; signal
analysis; fault detection;

I. INTRODUCTION

During the last decade, the research related to HPC systems
has mainly been focused on resilience. Numerous fault toler-
ance strategies have been proposed but by far the most popular
is the checkpoint restart technique [16]. A way of reducing
the overhead induced by these strategies is by combining
them with failure avoidance methods [34]. Failure avoidance
is based on a model that predicts fault occurrences ahead of
time and allows preventive measures to be taken, such as task
migration or checkpointing the application.

The analysis of event logs provides valuable information
about the normal behavior of the system and how failures
affect it and it allows identifying system bottlenecks [20],
[21]. Recent observations show different faults generate very
different syndromes of logged events.For example, a network
file system error usually generates a burst of notifications in
the log, however, when a node card fails, the event is usually

represented by a lack of messages in the log [4].
There is considerable research on analyzing log files for

prediction purposes, none of which is taking into consideration
the different characterization of failures [11], [29], [6], [18],
[10]. Furthermore, most of the studies do not consider the
failure location in their analysis, making reactive methods less
effective. For checkpointing strategies, prediction with location
information will allow the system to checkpoint data only on
the failed components. For migration, only the tasks on failure
prone components should be migrated. As we will show in
our experiment section, these methods have limitations that
can affect the overall performance of the prediction.

Moreover, it is important to be able to capture the behaviour
of each event type and understand what are the characteristics
that change over time and how errors affect it. Systems
experience software upgrades, configuration changes and even
installation of new components during the course of their
lifetime [7], [21]. This makes it difficult for the algorithms
to learn patterns since the system will experience phase shifts
in behaviour.

In this paper we combine signal processing concepts and
data mining techniques in the implementation of an analysis
module for large-scale systems. Signal analysis allows us
to characterize the behavior of events affecting the system,
highlighting the differences between failures. Data mining is a
powerful technology that is very efficient in extracting patterns
between high dimensionality sets and can be used to provide
accurate correlations between defined behaviors. We plan to
use the advantages given by both methods by offering a hybrid
approach for predicting failures in HPC systems. We also
implement a propagation module that extends the prediction
with location information so that the results could be applied
on current fault tolerance protocols.

Another important contribution of our paper is an in-depth
analysis of our methods results compared to purely data
mining and purely signal analysis modules. We investigate in
great detail what error types are easier to predict, what are the
limitations in correlating events or predicting faults and what
is the impact of having location information in the prediction
step. To the best of our knowledge this paper is the first to
combine signal analysis with data mining. We demonstrate
the effectiveness of using such a model by implementing the
prediction system and studying its impact on checkpointing

SC12, November 10-16, 2012, Salt Lake
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

strategies. Our prediction system takes into consideration the
location of the error-prone component and the online analysis
time.

The rest of the paper is organized as follows. Section 2 gives
an overview of the related work, highlighting the advantages
of our method. Section 3 presents the methodology behind
the hybrid approach, giving details regarding each of the used
algorithms. The next three sections give a detailed analysis
for the correlation, location and prediction results respectively.
We conclude with a summary of our work and discuss future
research directions in section 7.

II. RELATED WORK

Over the last decades, various prediction methods have been
proposed, by using both statistical and data mining methods. In
this section we will give a brief overview of solutions proposed
over the past few years and discuss their limitations. Also,
we look at current checkpointing strategies and discuss their
potential benefit in the presence of a prediction module.

Researchers have used for failure prediction association rule
based methods [5], decision trees or Bayesian networks [32].
All these methods examine correlations between past events
and fatal events to learn fault patterns for predicting potential
failures in the future; see, e.g., [10], [11]: Both studies extract
rules for a fixed time window and generate association rules
between fatal and non-fatal events that leave a prediction
window big enough so that proactive measures can be taken.
In [13], the authors use a similar algorithm with the difference
that the rule extraction can measure correlations of events
that may happen in an interleaved way. In our previous work
[12], we used a method similar to the previous ones, but we
adapted the prediction window according to the each event
type. A different approach is given in [8] and [9], where
the authors investigate parameter correspondence between
different application log messages for extracting dependencies
among different system components.

In [31], the authors introduce the concept of dynamic
meta-learning where the prediction engine switches between
different methods depending on different rules.

Another direction of analyzing the logs is given in [14],
where the authors investigate both usage and failure logs. For
each failure instance, past and future failure information is
accumulated and based on these features, they applied different
decision tree classifiers in order to predict failures with a fix
time window.

All the presented methods do not provide any location
information. This makes it impossible for proactive methods
to know which application processes should be migrated [30].
Even for reactive checkpointing strategies, predictions with
location information will enable checkpointing data only on
those failure-prone components, thereby avoiding system-wide
checkpointing which is significantly time consuming. [29]
deals with predicting the location of a failure. However it
considers that all errors share the same behavior. In fact, all
presented papers do not make a difference between different
events and analyze all of them in the same way. Another

(a) L3 major internal error

(b) instruction cache parity error corrected

(c) Controlling BG/L rows

Fig. 1. Signals generated by HPC systems and the outliers in each

approach to address fault location is to develop fault propaga-
tion models, like causality graphs or dependency graphs [33].
However, this requires a priori knowledge about the system
structure and dependencies among different components, in-
formation which is hard to obtain and maintain at large scales.

In this paper we propose a novel way of analyzing log files,
by using signal analysis to characterize events and data mining
algorithms to find patterns between them no matter of their
behavior. This gives a better understanding of the behaviour
of the entire system and provides a more accurate prediction.

The expectations for future exascale systems have acceler-
ated the research in checkpointing protocols. In the past years
new methods have been proposed that offer fast checkpoint and
restart stages. [25] proposes a low- overhead high-frequency
multi-level checkpoint scheme. Similarly [28] proposed a
multi-level checkpoint and a probabilistic Markov model that
describes the performance of such a multi-level scheme. [26]
uses a fault tolerant protocol based on double in-memory
checkpoint/restart and the idea of processor virtualization and
migratable objects. For shared memory applications, [27]
provides a hardware-based coordinated local checkpointing for
scalable coherence. The time to checkpoint differs significantly
between different strategies, however some studies show that
medium memory intensive applications could be saved in
around one minute [25].

Our prediction method comes as a complement to all this
work by providing predictions that leave enough time for
checkpointing and task migration. As a consequence our
method has the potential of decreasing the overhead induced
by these methods by reducing for example the checkpoint
frequency.

III. HYBRID APPROACH

In our previous work [4], we introduced signal analysis
concepts in the context of log file analysis. We discovered
that events generated by systems are characterized by three

types of signals: periodic, noise and silent. Figure 1 presents
the three types and the possible cause for each type.

We observed that a fault trigger in the system does not have
a consistent representation in the logs. For example, a memory
failure will cause the faulty module to generate a large number
of messages. Conversely, in case of a node crash the error
will be characterized by a lack of notifications. Data mining
algorithms in general assume that faults manifest themselfs in
the same way and in consequence fail to handle more than
one type behaviors.

For example, even though silent signals represent the ma-
jority of event types, data mining algorithms fail to extract
the correlation between them and other types of signals. This
affects fault prediction in both the total number of faults seen
by the method and in the time delay offered between the
prediction and the actual occurrence of the fault.

Signal analysis methods concepts can handle all three signal
types, and thus provide a larger set of correlations that can be
used for prediction. However, data mining algorithms are more
suited in characterizing correlations between different high
dimensionality sets than the cross correlation function offered
by signal analysis. Data mining is a powerful technology that
converts raw data into an understandable and actionable form,
which can then be used to predict future trends or provide
meaning to historical events.

Additionally, outlier detection has a rich research history
in incorporating both statistical and data mining methods for
different types of datasets. Moreover, they are able to implic-
itly adapt to changes in the dataset and to apply threshold
based distance measures separating outliers from the bulk of
good observations. In this paper, we combine the advantages
of both methods in order to offer a hybrid approach capable of
characterizing different behaviors given by events generated by
a HPC system and providing an adaptive forecasting method
by using latest data mining techniques.

In the following sections we present the methodology used
for preprocessing the log files and extracting the signals and
then we introduce the novel hybrid method that combines
signal analysis concepts with data mining techniques for
outlier detection and correlation extraction. An overview of
the methodology is presented in figure 2.

A. Preprocessing

Log files generated by large HPC system contain million
of message lines, making their manual analysis impossible.
Moreover, the format in which messages are generated is not
structured and differs between different system and sometimes
even between different components of the same machine. In
order to bring structure to our analysis, we extract the descrip-
tion of all generated messages. These descriptions represent
the characterization of different events used by the system.
Also, as software changes with versions, bug fixes or driver
updates, these descriptions are modified to reflect the system’s
output at all time.

For this, we performed an initial pass over the logs files to
identify frequently occurring messages with similar syntactic

Fig. 2. Methodology overview of the hybrid approach

patterns. Specifically, we use the Hierarchical Event Log
Organizer [15] on the raw logs, resulting in a list of message
templates. These templates represent regular expressions that
describe a set of syntactically related messages and define
different events in a system. In the on-line phase, we use
HELO on-line to keep the set of templates updated and
relevant to the output of the system.

For the rest of the paper, we analyze the generated events
separately by extracting a signal for each of them and char-
acterizing their behavior and the correlations between them.
Figure 1 presents one template or event type for each type
of signals. First, we extract the signal for each event type by
sampling the number of event occurrences for every time unit
and afterwards we use wavelets and filtering to characterize
the normal behavior for each of them. In our experiments, we
use a sampling rate of 10 seconds for all signals. More details
about this step can be found in [4].

In the on-line phase, the signal creation module simply
concatenates the existing signals with the information received
from the input stream of events. For optimization purposes,
we only keep the last two months in the on-line module since
execution time is an important factor in this phase. The outline
monitor and the prediction system are applied on this trimmed
and updated set of signals.

B. Analysis Modules

1) Outlier detection: All analysis modules are novel hybrid
modules that combine data mining techniques with the previ-
ously extracted set of signals and their characterization. Since
the offline phase is not ran in real-time and the execution time
is not constrained, we did not optimize this step. For outlier
detection in the on-line phase, we use as input the adapted
set of signals and apply a simple data cleaning method for
identifying the erroneous data points.

We implement this step as a filtering signal analysis module
so that is can be easily inserted between signal analysis

(a) Original data (b) Signal after filtering

Fig. 3. on-line outlier detection

modules. The transformation was intuitive since the data
mining algorithm is based on a causal moving data window
that is appropriate to realtime applications: the observed data
point yk is compared to the median ymk of past data points,
both the erroneous and the replaced ones. If the distance
between these points is large relative to a threshold based
on the normal behavior of the system, yk is declared an
outlier and a replacement with a more reasonable value yck
is proposed. Figure 3 presents a noise synthetic signal in its
original form and after applying the on-line outlier detection
with replacement for the erroneous data points.

For a window of N points, the analyzed list of points for
the current yk is:

Vk = {yck−N , ..., y
c
k−1, yk−N , yk−N+1, ..., yk}

out of which the median is extracted ymk . For our experi-
ments we use an N value of two months.

We use pre-defined thresholds for each signal, specified
automatically in the preprocessing step based on knowledge
about the normal behavior of the event type and how this was
affected by outlier in the offline phase.

The replacement strategy decreases the influence of severe
outliers on signals by saving both the initial value and one that
is more consistent with the rest of the dataset. At the same
time it minimizes the effects of a large number of faults hitting
the same signal for a larger period of time.

Having a low execution time is a requirement for the on-
line modules. The on-the-fly filter makes the process faster
than what is proposed in [4]. We will show in the experiment
part the number of faults missed because the outlier detection
and prediction took too long to notify the event with both the
methods. At the same time, this data mining algorithm adapts
to changes in the underlying signal.

C. Signal correlation

Gradual itemset mining is used in the data mining com-
munity for extracting patterns of the form ”the more/less
X1, .. , the more/less Xn”. The goal of the algorithm is to
discover frequent co-variations between different attributes.
This method has the advantage of extracting multiple event
correlations instead of only pairs like the output of the signal
cross-correlation function.

Fig. 4. Correlation example between three signals

We use the sequential GRITE algorithm presented in [2]
by adapting it to work with our signals. Since the purpose of
this paper is to predict faults, we are only correlating signals
depending on the occurrences of outliers in each. For this,
we filter out the normal behavior and leave only the outliers.
In order to simplify the correlation process, we replace each
point in the signal with 0 in case of normal behavior and
1 for outliers, no matter on the real representation in the
log. This allows us to represent signals as attributed that
can be handled by the gradual itemset mining algorithms
use a database of different attributes. This transformation is
illustrated in figure 4.

The sequential algorithm relies on a tree-based exploration,
where each level is built by using information from the
previous level. In its original form, the first level of the tree is
initialized with all attributes. However in our case, the initial
level is composed of the 2-pair correlations obtained with the
signal cross-correlation function. Gradual itemset mining is
a very complex and computationally expensive data mining
algorithm so sequential methods cannot yet scale to large
datasets. By merging it with a fast signal analysis module we
were able to guide the extraction process toward the final result
and so reducing the complexity of the original data mining
algorithm. Recently, research on gradual itemset mining has
focused on proposing parallel methods that are able to use
multi-core architecture for the extraction of itemsets [3]. We
plan to investigate the use of such methods on-line in order to
adapt correlations to changes in the system.

Itemsets from the L level are computed by combining fre-
quent itemsets siblings from the L-1 level by using a procedure
for joining two itemsets into a larger one. Candidates which
are more frequent than a pre-defined threshold are retained in
level L and are further used in the next level.

In its usual form, gradual itemset mining algorithms look
for patterns that take place at the same time in a subset of
attributes. For our purposes, we are interested in associating
signals that have a fixed delay one from another. For example,
if one event type usually occurs T time units after another
event type, these two signals will be shifted with T time
units one from the other (As an example, in figure 4 the last
two signals have a time delay of one minute). The correlation
module must be able to capture this scenario.

We modify the initial algorithm to check different delays
between signals by shifting one of the signals with the
corresponding delay and applying the gradual itemset mining

algorithm. To optimize the process we choose a small time
window for the delay values based on the results given by the
initial cross-correlation function.

The general gradual mining algorithm uses a comparison
operator in {≥,≤}. However in our case we only care about
the decreasing patterns (if an outlier occurs in S1, we want
to find all other Si signals where an outlier occurs with a
fixed delay). We change the algorithm to only search for the
≥ operator. For a better understanding of our hybrid approach
we will present an example in the next paragraph that goes
through all the steps used by the method.

Given a table set of signals S, a gradual item is a pair (Si,
θi) where Si is an attribute in S and θi represents a delay in
the signal. A gradual itemset G = {(S1, θ1), ..., (Sk, θk)} is a
set of gradual items of cardinality greater than or equal to 2.

In the example illustrated in figure 4, the initial set of
gradual itemsets which is given by the cross-correlation
function between all combinations of signals, is SGinit

=
{{(S1, 0), (S2, θ12)}, {(S1, 0), (S3, θ13)}, {(S2, 0), (S3, θ23)}}.

The join function used in GRITE will return the
merge between the sets in SGinit

and create SG1
=

{{(S1, 0), (S2, θ12), (S3, θ13)}, {(S1, 0), (S2, θ12), (S3, θ12 +
θ23)}, ...}, with different delays. In case all delays are con-
sistent, for example if θ13 = θ12 + θ23, SG1 will have only
one element. The testing part is left almost unchanged from
the gradual itemset mining with the difference that we only
use one operator.

We use the Mann Whitney test [22] to decide when a
correlation is statistically significant. The output of this mod-
ule is represented by a list of n-tuples correlations Corr =
{G1, .., Gm} where each Gi is a gradual itemset of different
sizes. We will make an in-depth analysis of the extracted
correlation list in the experiments sections.

D. Location correlation

Large-scale systems contain a large number of nodes that
are organized in an hierarchy. For example for the BlueGene
systems, nodes are gathered into midplanes and multiple
midplanes form a rack. When analyzing different errors that
might affect a HPC system we investigated the propagation
behavior of each of them. Our observation show that some
errors influence multiple nodes, depending on their location
in the machine [20].

After a closer analysis, we observed that the propagation
path for different error types follows closely the way compo-
nents are connected in the system. For example, if a fan breaks,
all nodes sharing the same rack will be affected. However,
in general, the topology of a system is not available. This
forces failure prediction algorithms to rely on heuristics for
tracking the locations of the failures effects in the system.
For a better understanding of the behavior of different event
types, we analyzed the logs generated by Blue Gene/L and
Mercury systems. Blue Gene is one of the few systems that
logs information about the location of events, making it easier
to understand the propagation behavior of correlated events.

The heuristic used to extract location correlations is based
on the offline correlation chains extracted in a previous
step. We parse the logs and monitori each occurrence of
a correlation Gi = {(S1, θ1), ..., (Sk, θk)}. Based on it we
extract the list of possible locations for each chain Loci =
{(L11, .., L1k1

), ..., (Lm1, .., Lmkm
)}, where (L11, .., L1k1

) is
a list of unique locations where events in the chain have
occurred and m is the number of occurrences for the cor-
responding sequence of events. In case of a correlation that
does not propagate events from one node to another, the list
of locations will be composed of only one element for each
occurrence: Loci = {(L1), (L2), ..., (Lm)}.

IV. DISSECTING EVENT CORRELATION

Our experiments are made mostly on the BlueGene/L
machine. The logs are available on-line at [24] and more
information about the system can be found in [1]. The
BlueGene machine is organized into 32 midplanes and 64
racks. Locations are denoted by codes that represent different
hardware components, such as compute nodes (R00-M0-N0-
C:J02-U01), I/O nodes (R22-M0-N0-I:J18-U01) and node
cards (R00-M0-N0). The location gives informations about the
component’s place in the architecture hierarchy as well. The
logs we analyzed are from June 2005 to January 2006 and
contains 207 different event types.

Most modules from our framework are platform indepen-
dent and so are easy to adapt to run on different machines.
To demonstrate this and to compare the results from different
systems, we made additional experiments on the Mercury
system. Mercury is a cluster at the National Centre for
Supercomputing Applications (NCSA) [23]. The generated
logs are owned by the NCSA and are not available to the
public because of privacy issues. The Mercury cluster started
with 256 compute nodes, and later additional 635 compute
nodes with faster processors were added. We analyzed logs
generated in 10 months of production from February 2006
to December 2006. Mercury logs contain 409 different event
types.

Both systems were used in production with a variety of
codes executing for the time frames analyzed in the logs. For
example, some of the applications that ran on the Mercury sys-
tems are the NAMD application for biomolecular simulations
and the CM1 code for atmospheric research. For our analysis
purposes, our framework gets information only from the log
files and so the analysis does not change for memory intensive
or communication intensive applications.

We used the first 3 months as training for the offline phase
and the rest of the logs for testing purposes.

A. Results

In this section we focus on analyzing the correlations we
were able to extract with our method. First, we were interested
to understand what type of patterns our method is able to
extract in general. Table I presents a couple of examples
returned by our method. At a first look, we observed that
the method was capable of detecting sequences of events that

Memory error
correctable error detected in directory *

after 6 time units (one minute)
uncorrectable error detected in directory *
capture first directory correctable error address..0

after 1 time unit
DDR failing data registers: * *
number of correctable errors detected in L3 EDRAMs.*
parity error in read queue PLB.*
Node card failure
midplaneswitchcontroller performing bit sparing on * bit *

after 44 time units
linkcard power module * is not accessible

after 4 time unit
problem communicating with service card, ido chip: * java.io.ioexception: could not find ethernetswitch on port:address 1:136

after 6 time unit
prepareforservice is being done on this part * mcardsernum(*) * * mtype(*) by *
Multi-line messages
general purpose registers:
lr:* cr:* xer:* ctr:*
Component restart sequence
idoproxydb has been started: $name: d+ $ input parameters: -enableflush -loguserinfo db.properties bluegene1
ciodb has been restarted.
bglmaster has been started: ./bglmaster –consoleip 127.0.0.1 –consoleport 32035 –configfile bglmaster.init –autorestart y
mmcs db server has been started: ./mmcs db server –usedatabase bgl –dbproperties * –iolog /bgl/bluelight/logs/bgl –reconnect-blocks all n+

TABLE I
SEQUENCE OF CORRELATED EVENTS

lead to a failure but was also able to capture relation between
informational messages. For example, multi-line messages are
identified by HELO as multiple event types. However, they
have the exact same behavior so our correlation was able to
cluster them together.

Messages generated during the installation of a component
or during a restart are another example of informational mes-
sages. Our tool characterizes their behavior as silent signals
since most of the time they do not appear in the log. Every
time there is a restart, these event types’ occurrences are
regarded as outliers. This allows our system to correlate these
signals with every other event type and extract the complete
restart sequence. At the same time, these sequences do not
give any benefit to our prediction since they do not affect an
application’s execution in any way. As a natural consequence,
we investigated what is the percentage of correlations that are
not useful in the prediction phase. This turned out to be a
complex task since some messages might indicate harmless
events in some contexts and indicate failures in others. At
this point we only eliminated the obvious non-error sequences
and analyzed the rest separately, as described in the prediction
section of this paper.

We observed that only around 23% of sequences do not have
any potential of predicting a problem in the system. We did this
only for the BlueGene/L machine because it offers a severity
field that helped us in determining if a event type could be a
failure in at least one context. We eliminated these sequences
for the rest of the analysis. For the BlueGene/L system this
was done automatically by eliminating all sequences that
contain only event types with INFO severity messages. For
other systems, a system administrator would have to parse the

correlation list and determine which ones can predict failures.
We focus next on an in-depth analysis of the properties of

the extracting correlations.

B. Analysis
First, we investigated how many events are in average part

of a correlation chain. For this we plotted the distribution of
the event types that compose a sequence in figure 5. The figure
shows that in general the sequences contain a small number of
event types, the average length of the chain being 4 for both
systems. However, there are some correlations containing more
event types, 20% of them containing more that 8 events.

Next, we analyzed the time delay between correlations
offered by our system. First we analyzed simply the pair
of initial correlations and then the complete sequences. We
observed that 33.7% of the correlations have less than 10
seconds delay between events, the majority (56%) having
delays between 10 seconds and one minute and the rest having
time delays of more than one minute. For both systems, only
around 2.5% of the sequences have more than 10 min between
events. For a better understanding of how this large percentage
of correlations affect the final prediction, we analyzed the
complete sequences as well.

We plotted the time delay distribution between the first
message indicating the beginning of a sequence and the
last visible symptom. Figure 6 presents the results only for
BlueGene/L due to space limitations but Mercury has a very
similar distribution. We can observe that the peak delay shifted
to the right compared with the correlation delays. Only 12.8%
of the sequences do not offer any prediction window larger
than 10s, 48.4% correlations offer between 10 seconds and
one minute and there is a significant percentage for which

Fig. 5. Sequence size distribution

the delay is larger than one minute. Moreover, the correlation
system is able to extract some sequences with hours time delay
between the first symptom and the final failure message.

We also observed that there is a relatively simple pattern
between the confidence of a sequence and the delay between
the marginal events in the sequence. In general, for delays
larger than 5 minutes, the larger the delay the lower the
similarity degree between the signal and so the lower the
confidence. Sequences with a confidence of over 95% usually
contain the correlations between events that are generated
close in time. However, there are some node card failure
sequences that have high confidence and offer more than one
hour prediction window.

In the following section, we look into closer detail which
failures have extreme time delays. In general, we observed that
node card failures offer sequences with longer time delays.
This should be reflected in a larger prediction window for
these kind of errors, and as a consequence more time for
fault avoidance strategies. For example, the node card failure
presented in table I offers around 9 minutes (the equivalent
of 54 time units) between the first and the last event in the
sequence. Other node cards examples show even one hour after
the first symptoms occurs. The memory errors detected with
our system, like the one presented in table I, usually offer in
average a one minute prediction window.

The Blue Gene/L system has a separate process, CIODB,
that runs on service nodes and handles the job loading and
starting. This process starts and monitors jobs, and updates the
job table as the job goes through the states of being loaded,
started and terminated. We observed that sequences or events
related to CIODB usually have a very short time delay between
them, the majority happening almost at the same time.

In all our experiments, we used logs that offer less than 10
months of activity. For this reason, the correlation updating
modules were not tested since the changes in such a short
time are not relevant to the whole lifetime of a system. We
plan to make further experiments on larger periods of time in
the future.

V. DISSECTING EVENT PROPAGATION

In this section we investigate the propagation path taken by
different extracted correlation chains. We were interested to

Fig. 6. Time delay distribution between events in sequences

know how many events propagate on different locations and
how many locations are affected by one event.

We observed that in general sequences do not propagate on
different locations and if they propagate they affect a small
number of nodes, only around 22% for Mercury and 25% for
BlueGene/L show any kind of propagation. Between 80% and
85% of the the sequences that show a propagation behavior
affect less than 10 nodes. The rest, which represents less than
2% from the total number of correlations, influence a large
number of nodes. An example of such a failure can be seen
on the Mercury machine, when we investigated NFS (network
file system) problems. The event ”rpc: bad tcp reclen d+
(non-terminal)” indicates network file system unavailability to
any requests for a machine. In applications using the network
file system this could cause file operations to fail and the
application to quit. Also all nodes from which the application
tries to access the network file system will be affected by this
problem. This failure usually occurs nearly simultaneously on
a large number of nodes.

To get a more realistic view of the behavior of sequences,
we analyzed the initial pair of correlated events for the
BlueGene/L machine and broke down the propagation on
racks, midplanes and nodes. Figure 7 shows that around 75%
of correlations show no propagation at all and only around
2.16% expend outside of the same midplane.

From our observation, in the Mercury system network
failures can occur nearly simultaneously on multiple nodes.
For example, the event ”ifup: could not get a valid interface
name: -> skipped” represents an unexpected node restart
caused by unexpected hardware failure, and propagates across
different nodes. In general, errors in memory or processor
caches do not show the same behavior. On the other hand,
in the BlueGene/L system we observed that some memory
locations expend to different node cards in a midplane. For
example, the sequence
d+ ddr errors(s) detected and corrected on rank 0, symbol * bit *
total of * ddr error(s) detected and corrected
refers to a ddr memory error that was detected and corrected
in a certain locations and in most of the cases affects multiple
nodes in the same midplane in a short period of time.

On the other hand, errors related to node cards do not

Fig. 7. Percentage of sequences propagating on different racks, midplanes
and nodes

Fig. 8. Prediction time window

propagate on multiple locations. For example the sequence:
can not get assembly information for node card
linkCard power module * is not accessible
no power module * found found on link card
gives information about a node card problem that is not fully
functional. Events marked as ”severe” and ”failure” occur after
around one hour and report that the link card module is not
accessible from the same midplane and that the link card is
not found. The sequence is generated by the same node for
all its occurrences in the log.

For 75% of correlations that do not propagate, the prediction
system does not need to worry about finding the right location
that will be affected by the failure. However, for the other 25%
that propagate, a wrong prediction will lead to a decrease in
both precision and recall. We analyzed this a little further and
observed that for most propagation sequences the initiating
node (the one where the first symptom occurs) is included in
the set of nodes affected by the failure. This leads us to believe
that the recall of the prediction system will be more affected
by the location predictor than its precision.

VI. DISSECTING PREDICTION

Figure 8 shows an overview of the prediction process. The
observation window is used for the outlier detection. The
analysis time represent the overhead of our method in making
a prediction: the execution time for detecting the outlier,
triggering a correlation sequence and finding the correspond-
ing locations. The prediction window is the time delay until
the predicted event will occur in the system. The prediction
window starts right after the observation point but is visible
only at the end of the analysis time.

In the next section we analyze the prediction based on
the visible prediction window and then propose an analytical
model for the impact of our results on checkpointing strategies.

Prediction method Precision Recall Seq used Pred failures
ELSA hybrid 91.2% 45.8% 62 (96.8%) 603
ELSA signal 88.1% 40.5% 117 (92.8%) 534
Data mining 91.9% 15.7% 39 (95.1%) 207

TABLE II
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

The metrics used for evaluating prediction performance are
prediction and recall:

• Precision is the fraction of failure predictions that turn
out to be correct.

• Recall is the fraction of failures that are predicted.

A. Analysis

In the on-line phase the analysis is composed of the outlier
detection and the module that triggers the predictions after
inspecting the correlation chains. We computed the execution
time for different regimes: during the normal execution of the
system and during the periods that put the most stress on the
analysis, specifically periods with bursts of messages. If the
incoming event type is already in an active correlation list, we
do not investigate it further since it will not give us additional
information.

The systems we analyzed generate in average 5 messages
per second and during bursts of messages the logs present
around 100 messages per second. The analysis window is
negligible in the first case and around 2.5 second in the second.
The worst case seen for these systems was 8.43 seconds during
an NFS failure on Mercury. By taking this analysis window
into consideration we examined how many correlation chains
are actually used for predicting failures and which failures are
we able to detect before they occur.

Our previous work showed 43% recall and 93% precision
for the LANL system by using a purely signal analysis
approach. However, at that point, we were not interested about
predicting the location where the fault might occur. In this
paper, we focus on both location and the prediction window.
We compute the results only for the BlueGene/L systems and
guided our metrics based on the severity field offered by the
system.

We analyzed the number of sequences found with our initial
signal analysis approach, the data mining algorithm described
in [29] and the present hybrid method. Signal analysis gives
a larger number of sequences, in general having a small
length, making the analysis window higher. Also, the on-
line outlier detection puts extra stress on the analysis making
the analysis window exceed 30 seconds when the system
experiences bursts. Due to our data mining extraction of multi-
event correlation we were able to keep only the most frequent
subset making the on-line analysis work on a much lighter
correlation set. On the other extreme, the data mining approach
looses correlations between signals of different types, so even
if the correlation set is much smaller than our hybrid method,
the false negative count is higher.

Fig. 9. Recall breakdown on different categories

Table II shows the precision and recall obtained with the
three methods. The recall value for the signal analysis method
is lower than in our previous findings. This can be explained
by the location prediction since now there is room for errors
in this part as well. What is interesting is that the precision
value for the data mining approach is higher than the other
methods. This can be explained by the fact that the low number
of sequences found by the data mining method are mostly
the ones that do not show a propagation behavior. When
running our method without checking the location we obtain
a precision of around 94%. The results show that the hybrid
method allows to combine the precision given by the data
mining approach and the recall of the signal analysis method.

We analyze in detail the results by breaking down the pre-
dicted events on different categories. The results are presented
in figure 9, where each bar represents how often a certain
type of error appears in the log as a percentage reported to all
errors in the system. The dark portion of every bar represents
the correctly predicted cases out of the total occurrences.
We observed that the node card errors were the type that
our system detected with a high rate, more than 80% of the
occurrences were predicted. This is explained in the high
confidence sequences obtained for this type in the offline
section. We plan to analyze in the future the reason why
there is such a low percentage in detecting network and cache
failures.

The total number of error messages in the log represent
18% of everything that is recorded in the log. An interesting
thing we observed after this analysis is that even though the
large majority of correlations are used at least once, there is
a small set that is used frequently. More exactly, 3.12% of
sequences are never used for prediction (the events occur only
in the training set) and 23.4% are used in the majority of the
cases.

We also analyzed the visible prediction window offered by
the sequences used in this process and observed that around
85% of the prediction offer more than 10 seconds after the
analysis window ended, out of which out of which more than
50% offer more than one minute and around 6% more than
10 minutes.

This means that fault avoidance techniques that take a
checkpoint or migrate a process in less than one minute

Fig. 10. Checkpoint-Restart mechanism

could be applied on 42% of the total predicted failures on
BlueGene/L, respectively 20% of total failures. When using
a fast checkpointing strategy, like the on from [25] the total
number of failures for which avoidance techniques could be
applied increases to 40%.

B. Impact on checkpointing strategies

In this section we derive an analytical model for the impact
of prediction on adaptive checkpointing strategies in order to
highlight the benefit brought by our method.

If no failure prediction is available, then fault tolerance
mechanisms must use periodic checkpointing and rollback
recovery. We start from the model from [34] that computes
the waste of a coordinated checkpointing strategy when no
prediction is offered and then integrate the impact of precision
and recall on this model. Figure 10 presents the variables used
in creating the model. With T, we represent the checkpoint
interval, W represents the percentage of wasted time and
MTTF the mean time to failure for each node. Also, we assume
a task of a job running on a node can be checkpointed locally
on that node in C seconds, and the checkpoint can be loaded
back into memory in R seconds. Also, the downtime of a node
and the time to restart the application on a different node or
the same node in case of rejuvenation is D seconds.

We assume that we are able to predict a fraction N of the
failures with a precision of P, with N,Pε[0, 1]. We assume
the failure distribution for the non-predicted failures remains
exponential and that preventive actions are taken before the
failure occurs for all predicted failures.

In case of no prediction, we start with the following model:

W =
C

T
+

T

2mttf
+
R+D

mttf
(1)

The formula accounts for the lost of C seconds every T
seconds for taking checkpoints, the lost due to faults that occur
every mttf seconds and lose an average of T

2 time-steps each
time and in the last term for the lost due to the recovery time
that is taken for every failure.

The optimal checkpointing interval can be used to compute
the minimum waste and it is given by Young’s formula.

Toptimum =
√
2Cmttf (2)

We now introduce the prediction model. First we assume
having a recall of N and perfect precision. In this case the mttf
of the un-predicted events will become mttfnew = mttf

1−N . For

example if 25% of errors are predicted, the new mttf is 4mttf
3 .

The rest of the failures are predicted events and have a mean
time between them of mttf

N seconds.
By applying the new mttf for the un-predicted failures to

equation (2), the new optimal checkpoint interval becomes

Toptimum =

√
2C

mttf

1−N
(3)

The first two terms from equation (1) need to change to
consider only the un-predicted failures since for all the others
preventive actions will be taken. By adding the first two terms
and incorporating the value for the checkpoint interval from
equation (3), the minimum waste becomes:

W recall
min =

√
2C(1−N)

mttf
+

(R+D)

mttf
(4)

The last term from equation (1) will not change since for all
failures, both predicted and un-predicted, the application needs
to be restarted. Additional to the waste from (4), each time
an error is predicted, the application will take a checkpoint
and it will waste the time execution between this checkpoint
is taken to the occurrence of the failure. This value depends
on the system the application is running on and can range
between a few seconds to even one hour. However, for the
systems we analyzed, in general, the time delay is very low
and for our model we consider that is negligible compared to
the checkpointing time. We add the waste of C seconds for
each predicted failure, which happens every mttf

N seconds.
After adding this waste equation (4) becomes:

W recall
min =

√
2C(1−N)

mttf
+

(R+D)

mttf
+

CN

mttf
(5)

In the ideal case, when N=1, the minimum waste is equal to
the time to checkpoint right before every failure and the time
to restart after every failure. The formula assumes a perfect
precision. In case the precision is P, the waste value must
also take into consideration the cases when the prediction
is wrong. The predicted faults happen every mttf

N seconds
and they represent P of total predictions. This means that
the rest of (1-P) false positives predictions will happen every
P

1−P
mttf
N seconds. Each time a false positive is predicted, a

checkpointing is taken that must be added to the total waste
from equation (5):

W recall
min =

√
2C(1−N)

mttf
+

(R+D)

mttf
+
CN

mttf
+
CN(1− P)
Pmttf

(6)
As an example, we consider the values used by [34] to

characterize current systems: R = 5, D = 1 in minutes and
study two values for the time to checkpoint: C=1 minute and
from [25] C=10 seconds. We computed the gain from using
the prediction offered by our hybrid method with different
precision and recall values and for different MTTFs. Table III

C Precision Recall MTTF for the whole system Waste gain
1min 92 20 one day 9.13%
1min 92 36 one day 17.33%
10s 92 36 one day 12.09%
10s 92 45 one day 15.63%

1min 92 50 5h 21.74%
10s 92 65 5h 24.78%

TABLE III
PERCENTAGE WASTE IMPROVEMENT IN CHECKPOINTING STRATEGIES

presents the results. The first 4 cases present numbers from real
systems and checkpointing strategies. Interestingly, for future
systems with a MFFT of 5h if the prediction can provide a
recall over 50% then the waist time decreases by more than
20%. For the future, we plan to combine a checkpointing
strategy with our prediction and study its effectiveness in real
HPC systems.

VII. CONCLUSION

This paper investigates a novel way of analyzing log files
from large-scale systems, by combining two different analysis
techniques: data mining and signal processing and using the
advantages given by both. We use signal analysis concepts
for shaping the normal behaviour of each event type and of
the whole system and characterizing the way faults affect
them. This way the models we use are more realistic in that
they take into account the different behaviour of the events
during failure free execution and when failures occur. At the
same time we use data mining algorithms for analyzing the
correlations between these behaviors since these algorithms
prove themselves more suited in characterizing the interactions
between different high dimensionality sets than the cross
correlation function offered by signal analysis.

In our experiments we show that a more realistic model,
like the one obtained with the hybrid method, influences the
prediction results and in the end the efficacy of fault tolerance
algorithms is improved. We investigated both the lag time
between the prediction moment and the time of occurrence
for the actual failure, taking into consideration the analysis
time, and concluded that the proposed model could allow
proactive actions to be taken. Moreover, since the location
of an error in an important part of a prediction system, we
included in our prediction location analysis and studied its
impact on the results. We will focus in the future on a more
detailed analysis of different error types for which our system
has a low recall. Also, we plan to study to a wider extend, the
practical way the prediction system influences current fault
tolerance mechanisms.

ACKNOWLEDGMENT

This work was supported in part by the DoE 9J-30281-
0008A grant, and by the INRIA-Illinois Joint Laboratory for
Petascale Computing.

REFERENCES

[1] N. Taerat, Y. Zhang, A. Sivasubramaniam, M. Jette, R. Sahoo: Blue-
Gene/L Log Analysis and Time to Interrupt Estimation. International
Conference on Availability, Reliability and Security, pp.173-180, 2009

[2] L. Di Jorio, A. Laurent, M. Teisseire: Mining frequent gradual itemsets
from large databases. International Conference on Intelligent Data Anal-
ysis, IDA09, 2009

[3] A. Laurent , B. Negrevergne, N. Sicard, and A. Termier: PGP-mc:
Towards a Multicore Parallel Approach for Mining Gradual Patterns
Database Systems for Advanced Applications, volume 5981, pp 78-84,
2010

[4] A. Gainaru, F. Cappello, W. Kramer: Taming of the Shrew: Modeling the
Normal and Faulty Behavior of Large-scale HPC Systems International
Parallel and Distributed Processing Symposium, 2012

[5] Y. Liang: BlueGene/L Failure Analysis and Prediction Models. Pro-
ceedings of the International Conference on Dependable Systems and
Networks, pp 425 - 434, 2006

[6] R. K. Sahoo et al: Critical Event Prediction for Proactive Management In
Large-scale Computer Clusters. International conference on Knowledge
discovery and data mining, pp 426-435, 2003

[7] N. Yigitbasi et al: Analysis and Modeling of Time-Correlated Failures in
Large-Scale Distributed Systems. IEEE/ACM International Conference
on Grid Computing, pp 65-72, 2010

[8] J. G. Lou et al: Mining Dependency in Distributed Systems through
Unstructured Logs Analysis ACM SIGOPS Volume 44 Issue 1, January
2010

[9] W. Xu et al: Online System Problem Detection by Mining Patterns of
Console Logs IEEE International Conference on Data Mining, pp 588-
597, 2009

[10] Z. Zheng et al: A Practical Failure Prediction with Location and Lead
Time for Blue Gene/P International Conference on Dependable Systems
and Networks Workshops, pp 15-22, 2010

[11] J. Gu et al: Dynamic Meta-Learning for Failure Prediction in Large-
Scale Systems: A case Study International Conference on Parallel Pro-
cessing, pp 157-164, 2008

[12] A. Gainaru, F. Cappello, S. Trausan-Matu, W. Kramer: Adaptive
Event Prediction Strategy with Dynamic Time Window for Large-Scale
HPC Systems. System Log Analysis with Machine Learning Workshop,
SLAML, 2011

[13] R. Ren et al: LogMaster: Mining Event Correlations in Logs of Large-
scale Cluster Systems CoRR abs/1003.0951, 2010

[14] N. Nakka et al: Predicting Node Failure in High Performance Computing
Systems from Failure and Usage Logs IEEE Workshop on Dependable
Parallel, Distributed and Network-Centric Systems, 2011

[15] A. Gainaru, F. Cappello, S. Trausan-Matu, W. Kramer: Event log mining
tool for large scale HPC systems. International Conference on Parallel
Processing Euro-Par, volume 1, pp 52-64, 2011.

[16] R. Iyer et al: Automatic recognition of intermittent failures: An experi-
mental study of field data. IEEE Transactions on Computers, 39:525537,
1990.

[17] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, R. Iyer: Improving Log-
Based Field Failure Data Analysis of Multi-Node Computing Systems
International Conference on Dependable Systems and Networks (DSN),
pp 97-108, 2011

[18] Z. Zheng, Z. Lan, B. Park, and A. Geist: System log preprocessing
to improve failure prediction. International Conference on Dependable
Systems and Networks, pp 572-577, 2009.

[19] A. Oliner et al: What Supercomputers Say: A Study of Five System
Logs. International Conference on Dependable Systems and Networks,
2007

[20] E. Heien, D. Kondo, A. Gainaru, D. LaPine, W. Kramer, F. Cappello:
I Modeling and Tolerating Heterogeneous Failures in Large Parallel
Systems. International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011

[21] B. Schroeder et al: A large-scale study of failures in high-performance
computing systems. International Conference on Dependable Systems and
Networks, pages 249-258, June 2006

[22] R. C. Milton: An Extended Table of Critical Values for the Mann-
Whitney (Wilcoxon) Two-Sample Statistic. Journal of the American
Statistical Association, Volume 59, Issue 3, 1978

[23] National Center for Supercomputing Applications at the University of
Illinois. www.ncsa.illinois.edu. Accessed on 2010.

[24] The computer failure data repository. http://cfdr.usenix.org. Accessed on
2010.

[25] L. B. Gomez et al: FTI: high performance Fault Tolerance Interface for
hybrid systems. International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2011.

[26] G. Zheng et al: FTC-Charm++: An In-Memory Checkpoint-Based Fault
Tolerant Runtime for Charm++ and MPI. International Conference on
Cluster Computing CLUSTER, pp 93-103, 2004

[27] R. Agarwal et al: Rebound: Scalable Checkpointing for Coherent Shared
Memory. ACM SIGARCH Computer Architecture News, Volume 39
Issue 3, 2011

[28] A. Moody, G. Bronevetsky, K. Mohror, B. R. de Supinski: Design, Mod-
eling, and Evaluation of a Scalable Multi-level Checkpointing System.
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp.1-11, 2010

[29] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, P. Beckman: A Practical Failure
Prediction with Location and Lead Time for Blue Gene/P Proceedings of
the 2010 International Conference on Dependable Systems and Networks
Workshops, pp 15-22, 2010

[30] C. Wang, F. Mueller, C. Engelmann, and S. Scott: Proactive process-
level live migration in HPC environments. International Conference for
High Performance Computing, Networking, Storage and Analysis, 2008.

[31] J. Gu, Z. Zheng, Z. Lan, J. White, and B. Park: Dynamic meta-learning
for failure prediction in large-scale systems: A case study. International
Conference on Parallel Processing, 2008.

[32] R. Sahoo and A. Oliner: Critical event prediction for proactive manage-
ment in large-scale computer clusters. SIGKDD International Conference
on Knowledge Discovery and Data mining , pp 426-435, 2003.

[33] M. Steinder and A. Sethi: A survey of fault localization techniques in
computer networks. Science of Computer Programming, volume 53, issue
2, 2004

[34] F. Cappello, H. Casanova, and Y. Robert: Checkpointing vs. migration
for post-petascale supercomputers. International Conference on Parallel
Processing, 2010

