610

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

Generalized Communicators in the
Message Passing Interface

Erik D. Demaine, Student Member, IEEE, lan Foster,
Carl Kesselman, Member, IEEE Computer Society, and Marc Snir, Fellow, IEEE

Abstract—We propose extensions to the Message Passing Interface (MPI) that generalize the MPI communicator concept to allow
multiple communication endpoints per process, dynamic creation of endpoints, and the transfer of endpoints between processes. The
generalized communicator construct can be used to express a wide range of interesting communication structures, including collective
communication operations involving multiple threads per process, communications between dynamically created threads or
processes, and object-oriented applications in which communications are directed to specific objects. Furthermore, this enriched
functionality can be provided in a manner that preserves backward compatibility with MPI. We describe the proposed extensions,
illustrate their use with examples, and describe a prototype implementation in the popular MPI implementation MPICH.

Index Terms—MPI, process spawning, multithreading, process names.

1 INTRODUCTION

N important feature of the Message Passing Interface
(MPI) [1], [2] is the communicator, which allows the
programmer to define unique communication spaces within
which a set of processes can communicate without fear of
interference. Communicators are created by collective calls
that create a local instance of a communicator object in each
of a set of processes. We can think of the local commu-
nicator object in each process as a “communication port”
that the process can use to send messages to and receive
messages from other such “ports” connected by the same
communication space.1 In an intracommunicator, the ports
are connected so that each can send to and receive from any
other. In an intercommunicator, the ports form two
disjointed sets, with each member of one set being able to
send to and receive from any member of the other set.
The two related concepts of communication space and
communication port are powerful and general. However,
we believe that their utility is significantly reduced by the
fact that an MPI communicator must define exactly one
port per process in a process group and by the fact that
only fully connected and bipartite communication struc-
tures are supported. Such communication structures are

1. This view is related to the notion of “port” formalized in OOMPI [3],
an object-oriented package for message passing based on MPIL

e E.D. Demaine is with the Department of Computer Science, University of
Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: eddemaine@uuwaterloo.ca

o [Foster is with the Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439 and the University of Chicago,
Chicago, IL 60637. E-mail: foster@mcs.anl.gov.

o C. Kesselman is with the Information Sciences Institute, University of
Southern California, Marina del Rey, CA 90292.
E-mail: carl@compbio.caltrech.edu.

o M. Snir is with the IBM T.]. Watson Research Center, PO Box 218,
Yorktown Heights, NY 10598. E-mail: snir@watson.ibm.com.

Manuscript received 1 Nov. 1999; revised 20 Nov. 2000; accepted 1 Dec. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110889.

often sufficient for homogeneous, single-threaded,
SPMD computations. However, task-parallel, multi-
threaded, and heterogeneous computations often can
benefit from more flexible communication structures.
Consider the following situations:

e a multithreaded computation in which a pro-
grammer requires unidirectional communication
channels between two dynamically created threads
of control located in different processes,

e a dynamic computation in which a master process
“connects” two dynamically created child processes,

e atask-parallel computation in which communication
needs to be directed to a specific data-structure (or
object) rather than to a process.

In each of these examples, the collective, all-to-all nature of
the MPI communicator is an impediment to a direct
expression of the required communication structure.

A more fundamental problem with MPI communicators
is their second-class nature. Before a communicator can be
created, all member processes must know about each
other through other communicators. In other words, a
process cannot send the name of another process in an
MPI message unless the recipient already knows the name
from another communicator of which it is a member. This
restriction has serious consequences for dynamic process
spawning in MPI-2 [4] as the names of newly created
processes cannot be communicated to other processes
without “merging” communicators via global synchroniza-
tion. We argue that, in this situation, first-class process names
are needed, by which we mean the ability to store a globally
significant process name in an MPI message. The following
are some examples of situations in which this feature is
required:

e a name server that associates process names with
service descriptions,

1045-9219/01/$10.00 © 2001 IEEE

DEMAINE ET AL.: GENERALIZED COMMUNICATORS IN THE MESSAGE PASSING INTERFACE 611

e a group communication system with support for
dynamic membership; the group server must be able
to notify processes of new members and specify their
names in order to facilitate communication,

e concurrent programming languages that support
dynamic process spawning and “first-class channels.”
A channel is a unidirectional connection between a
collection of sending processes and a collection of
receiving processes, similar to an MPI intercommu-
nicator. First-class channels, that is, channels that
can be passed over channels, are an important
part of many concurrent languages, including
Concurrent ML [5], Fortran M [6], PCN [7], and
Strand [8].

In fact, first-class process names are crucial in nearly every
situation involving the dynamic creation of processes
and/or threads and their lack severely limits the possible
applications for MPL

In this article, we propose a generalized communicator
mechanism that eliminates these limitations while main-
taining backward compatibility with MPI as currently
defined. This generalized mechanism allows a process to
create new communication ports and connect these ports in
an arbitrary topology. Furthermore, the port becomes a
first-class object and can be sent to other processes via
MPI messages.

Other extensions to the MPI communicator have been
proposed. For example, Skjellum et al. [9] propose
mechanisms that allow for a richer set of collective
operations over communicators as well as extensions
that support multithreaded execution. The extensions
presented here are orthogonal to these proposals.

An alternative proposal to communicators are the
channels in MPI/RT, a real-time message-passing
standard [10]. In MPI/RT, process names are first-class
objects that can be communicated in messages, unlike
MPI. However, channels themselves (which offer commu-
nication contexts) cannot be communicated in messages
and have a static and completely connected structure. This
paper addresses all of these issues simultaneously.

In the remainder of this article, we introduce our
generalized communicator mechanism, illustrate its use
with examples, and describe a prototype implementation. A
preliminary version of this paper appeared in [11].

2 GENERALIZED COMMUNICATORS

In MPI, a communicator is first and foremost a global
structure. An implementation of this structure typically
maintains a set of local data structures, which we might
call local communication objects (LCOs). However, no
mechanism is provided for manipulating these LCOs
directly. Our extensions generalize the MPI communicator
so that the LCO becomes an MPI data type in its own
right. Thus, the generalized LCO implements the
“communication port” abstraction referred to in the
introduction. Each LCO contains explicit references to other
LCOs and, hence, provides a purely local view of a
communication topology.

This new interpretation of the MPI communicator
separates the two concepts of communication and process.
An arbitrary number of LCOs can be created within a
process and communications can be directed to different
LCOs within the same process. In addition, the new
interpretation makes it possible to create arbitrary commu-
nication topologies. These new capabilities enable the use of
more general protocols for communication port creation
and destruction. For example:

e A multithreaded computation can dynamically
define a point-to-point communication namespace
between two or more threads of control, whether
these threads are located in the same or different
processes.

e We can pass references to communication ports
(“port capabilities”) between processes, thus allow-
ing, for example, a thread to delegate responsibility
for performing a particular communication.

e We can define communicator-like structures
containing more communication ports than
processes. This feature makes it possible to
perform collective operations involving multiple
threads [12], where the number of threads may
be greater than the number of processes, which
is a situation that can arise on shared-memory
multiprocessors or in programs that create one
thread per application “task.”

Fig. 1 illustrates some of the communication structures
that can be specified using the port construct. We
emphasize that the extended interpretation of the local
communicator object does not affect MPI's intracommu-
nicator and intercommunicator concepts. For example, an
intracommunicator connecting N processes is just a
collection of N LCOs, each referencing the N other LCOs.

3 SEND AND RECEIVE SLOTS

We now consider the structure of an LCO in some detail.
Associated with an LCO is a sequence of send slots and a
sequence of receive slots. A receive slot is a communication
endpoint, a location to which communication can be
directed. A send slot is a reference to a receive slot in an
LCO. This reference comprises the LCO’s name, which is a
new MPI datatype, and the index of the receive slot in the
named LCO’s receive set. LCOs can be connected to form
arbitrary graphs. The only consistency requirement on an
LCO is that, for each send slot, there exist an LCO with a
matching receive slot.

By interpreting the rank in MPI communication
operations as a slot index, rather than the rank of the
source or destination process in the process group, we can
apply operations such as send and receive to a port
without modification. In a send call, the rank specifies
the send slot referencing the LCO into which data is to
be deposited. In a receive call, the rank specifies the
index of the receive slot in which to look for incoming
data. If the LCOs are connected in an all-to-all config-
uration, the behavior is exactly that of a conventional
MPI intracommunicator.

612

(©

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

Fig. 1. The two types of commuincation structure can be specified in MPI: (a) the fully connected communicatior and (b) the intercommunicator’s
bipartite graph. Three different structures that can be specified by using MPI extended to support ports. (c) A fully connected communicator with
more than one LCO per process, (d) a regular communicator coexisting with a dynamically created communicator connecting two LCOs, and (e) a
communicator structure that allows two senders to communicate with a single receiver.

A local communicator object can be used anywhere that
an MPI communicator is used. Hence:

e All MPI point-to-point communication functions can
be applied to LCOs.

e All MPI collective communication functions can be
applied collectively to a set of LCOs defining an
intracommunicator.

e MPI intercommunicator functions can be applied
collectively to a set of LCOs defining an
intercommunicator.

e MPI functions involving process groups and
communicators can be applied to LCOs. This issue
is discussed below.

In each of these situations, multiple threads may be
required to avoid deadlock if two or more of the LCOs
involved in a communication are located in the same
process.

The semantics of communication on generalized LCOs
are identical to those for MPI communicators. In particular,
messages sent on a communication edge linking two LCOs
are received in order and communication failure results in
an exception at the sending or receiving LCO. In a
multithreaded system, if two or more threads perform
receive operations that would match an incoming message,
all block until the message arrives. The first thread to have
performed a matching receive operation then succeeds and

receives the message. The others stay blocked.
For notational purposes, we can think of an LCO as a

pair with the following form:
port = {set-of-send-slots, set-of-recv-slots}

where a set is denoted by a comma-separated list, enclosed
in angle brackets, and a send slot has the form

send-slot = lco-name[recv-slot-number]

A receive slot is denoted simply by a “+.” We use this
notation to present some examples.

Example: Channel. A unidirectional channel is defined by a
pair of LCOs connected such that one can be used to
send to the other. For example, the two LCOs

PO = {<P1[0]>, <>}

define a channel from LCO PO to LCO P1. P1 has a single
receive slot. PO has a single send slot, which contains a

Pl = {<>, <+>}

reference to P1’s receive slot. Hence, the calls

MPI_Send(in, 1, type, 0, tag, P0O)
MPI_Recv(out, 1, type, 0, tag, P1, status)
will transfer data from in to out. That is, a send on
P0’s zeroth send slot is matched by a receive from
P1’s zeroth receive slot.
Example: Intracommunicator. An MPI intracommunica-
tor is defined by a set of LCOs configured as a fully
connected network. For example, the LCOs

PO = {<PO[0],P1[0],P2[0]>, <+,+,+>}

Pl = {<PO[1],P1[11,P2[1]>, <+,+,+>}

P2 = {<P0[2],P1[2],P2[2]>, <+,+,+>}
define a fully connected network, that is, an MPI

intracommunicator. The calls

MPI_Send(in, 1, type, 2, tag, P0O)

MPI_Recv(out, 1, type, 0, tag, P2, status)
will transfer data from in to out. That is, a send to
P0’s second send slot is matched by a receive on
P2’s zeroth receive slot.

Example: Intercommunicator. An MPI intercommunicator
is defined by two sets of LCOs configured such that
each LCO in the first set can send to and receive from
each LCO in the second set. For example, the LCOs

DEMAINE ET AL.: GENERALIZED COMMUNICATORS IN THE MESSAGE PASSING INTERFACE 613

PO = {<P2[0]1,P3[0]>, <+,+>}
Pl = {<P2[1],P3[1]>, <+,+>}
P2 = {<PO[0],P1[0]>, <+,+>}
P3 {<PO[1],P1[1]>, <+,+>}

define a structure equivalent to an MPI intercommuni-
cator. In this case, LCOs PO and P1 are connected to
LCOs P2 and P3 so that, for example, the calls

MPI_Send(in, 1, type, 1, tag, P0O)
MPI_Recv(out, 1, type, 0, tag, P3, status)

will transfer data from in to out. That is, a send to
P0’s first send slot is matched by a receive on P3’s
zeroth receive slot.

4 MANIPULATING LocAL COMMUNICATORS

We now consider how the MPI interface can be extended to
support LCOs. We define six new functions that are used to
create a local communicator, to obtain an LCO name that
can be communicated between processes, to add slots to
LCOs, and to determine the number of slots associated with
an LCO. Other functions can be defined to delete slots,
obtain information about slots, etc., but, for brevity, we do
not consider these here.

It is important to stress that operations on LCOs are local,
requiring no synchronization with other processes. Thus, in
particular, LCOs could not be implemented by appro-
priately splitting the MPI_COMM_WORLD communicator
because this would require global synchronization.

An LCO is represented by the opaque datatype
MPI_Comm. We will often need to be able to create an
“LCO name” that can be communicated between
processors, so we define the related opaque datatype
MPI_Comm_name and the new communication datatype
MPI_CNAME.

MPI_COMM_CREATE_LOCAL (Icomm)
OouT lcomm New local communicator (handle)

Create a new local communicator object, 1comm. Initially,
no send or receive slots are associated with the new LCO.
These must be added explicitly.

MPI_COMM_NAME(lcomm, name)
IN lcomm Local communicator object (handle)
ouT name Communicator name (handle)

Create and return a name that can be used to reference
the 1comm. This name is used in the next function.

MPI_COMM_ADD_SEND_SLOTS(Ilcomm, count, Icos,
slots)

INOUT Icomm Local communicator object (handle)

IN count Number of slots to add (integer > 0)

IN Icos LCOs to be sent to (array of
communicator names)

IN slots Slots to be sent to (array of integers)

This function and the next are used to create new
connections between LCOs. This function adds count send
slots to 1comm immediately after all existing send slots and
defines each new slot i to be the reference to the receive slot

lcos (i) [slots (4) 1. Note that the receive slots referenced
by the newly created send slots may not exist yet and must
be created using MPI_COMM_ADD_RECEIVE_SLOTS. Itis
erroneous for a program to use a send slot, i.e., send a
message on a send slot, before the target receive slot is
created.

MPI_COMM_ADD_RECEIVE_SLOTS(Ilcomm, count)
INOUT Icomm Local communicator object (handle)
IN count Number of receive slots (integer > 0)

This function adds count slots to the receive set of
lcomm immediately after all existing receive slots.

MPI_COMM_NUM_SEND_SLOTS(Ilcomm, count)
IN lcomm Local communicator object (handle)
ouT count Number of send slots (integer > 0)

Return the number of send slots in the LCO lcomm.
Notice that if this LCO is part of a communicator structure,
this function is equivalent to MPI_COMM_SIZE.

MPI_COMM_NUM_RECEIVE_SLOTS(lcomm, count)
IN lcomm Local communicator object (handle)
ouT count Number of receive slots (integer > 0)

Return the number of receive slots in the LCO lcomm.
Again, if this LCO is part of a communicator structure, this
function is equivalent to MPI_COMM_SIZE.

Example: Creating a Channel. Fig. 2 creates a
unidirectional channel: a pair of LCOs connected so
that one can be used to send to the other. The
connection is established by using an existing commu-
nicator to send a reference to one LCO (the “receive
end”) to the process containing the second LCO (the
“send end”). A number of messages are then commu-
nicated on the channel. Notice how, at the send end,
messages are sent on the single send slot, while, at the
receive end, messages are received on the single receive
slot.

Example: MPI_COMM_DUP. Just as MPI's point-to-point
communication functions can be used to implement
MPI’s various global operations, so the LCO operations
can be used to implement MPI's communicator func-
tions. For example, Fig. 3 implements MPI_COMM_DUP.
This function is applied collectively to a set of LCOs
assumed to define an intracommunicator. comm is one
such LCO. It constructs a new set of LCOs defining an
intracommunicator with the same topology.

4.1 An Alternative Interface Design

The LCO construct defined above serves as a capability for
a port, providing the ability to send or receive to or from
another LCO. Once the name has been distributed, the
holder of that capability is responsible for synthesizing a
slot name from the port name. In situations where security
or safety are issues, the ability to create a slot reference
unilaterally can be problematic.

An alternative interface would associate names with
specific receive slots rather than LCOs. The “add receive
slots” operation then returns a slot name, a capability that
allows another LCO to send to that receive slot. This

614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

receiver_side(MPI_Comm comm, int nbr)
{

MPI_Comm receiver;

MPI_Comm_name rname;

MPI_Status status;

int msg = -1;

/* Create an LCO representing the channel */
MPI_Comm_create_local(&receiver);
MPI_Comm_add_receive_slots(receiver, 1);

/* Send LCO name to other process */
MPI_Comm_name(receiver, &rname);
MPI_Send(&rnmame, 1, MPI_CNAME, nbr, 99, comm);

/* Receive messages from other process on channel */
while (msg)
MPI_Recv(&msg, 1, MPI_INT, 0, 99, receiver, &status);

MPI_Comm_free(&receiver);

}

sender_side(MPI_Comm comm, int nbr)
{
MPI_Comm sender;
MPI_Comm_name rnames[1];
MPI_Status status;
int msg, rslots[1];

/* Create an LCO representing the channel */
MPI_Comm_create_local(&sender);

/* Receive LCO name from other process,
add to send list */
MPI_Recv(rnames, 1, MPI_CNAME, nbr, 99, comm, &status);
rslots[0] = 0;
MPI_Comm_add_send_slots(sender, 1, rnames, rslots);

/* Send messages to other process on newly created channel */
for(msg=10; msg>=0; msg--)
MPI_Send(&msg, 1, MPI_INT, O, 99, sender);

MPI_Comm_free(&sender);

Fig. 2. Implementation of a unidirectional channel using the generalized
communicator constructs.

reference can be added to another LCO with a variant of the
“add send slot” call with the form

MPI_COMM_ADD_SEND_SLOT(lcomm, slot-reference).

This scheme has the advantage that we can define a
capability for a single receive slot rather than for the entire
LCO as in the scheme described previously. A disadvantage
is that, in applications that require many connections, a
large number of these slot tokens must be communicated.
For example, in the MPI_COMM_DUP example, Q(N 2) slot
tokens must be created and communicated, where N is the
number of LCOs. In contrast, the scheme described in the
preceding sections requires that only N communicator

names be communicated.
Ignoring security issues, encapsulating an LCO name

and a slot number into a single object (a slot name) can be a
convenient user interface. For example, having such a data
type permits easily sending a slot name in a message. For
this reason, we implemented both interfaces in our
prototype implementation described in Section 5.

comm_dup (MPI_Comm comm, MPI_Comm *newcomm)
{

int numslots, *rslots, i;

MPI_Comm_name *names, localname;

MPI_Comm_num_send_slots(comm, &numslots);
names = (MPI_Comm_name *) malloc(numslots*sizeof (MPI_Comm_name));
rslots = (int *) malloc(numslots*sizeof (int));

/* Create our new LCO */

MPI_Comm_create_local (newcomm) ;

MPI_Comm_name (*newcomm, &localname);
MPI_Comm_add_receive_slots(*newcomm, numslots);

/* Gather operation collects pointers to all new LCOs */
MPI_Allgather(&localname, 1, MPI_CNAME, names, 1, MPI_CNAME, comm);

/* Associate these pointers with our LCO */
for(i=0; i<numslots; i++)
rslots[i] = i;
MPI_Comm_add_send_slots(#newcomm, numslots, names, rslots);

free(names);
free(rslots);

Fig. 3. Implementation of MPI_Comm_dup using generalized commu-
nicator constructs.

4.2 Interaction with Process Groups

As noted above, MPI functions that expect a communicator
as an argument behave as expected when applied to a
set of LCOs that are structured so as to implement an
MPI communicator. What happens when these functions
are applied to LCOs that do not implement a communicator,
either because they form less than fully connected struc-
tures or because they connect more than one communicator
object per process? We propose addressing these
situations by 1) generalizing the definition of existing
MPI functions so that they work when applied to any
LCO and 2) introducing a small number of new functions.
In this article, we do not provide a detailed specification for
these extensions, but instead discuss some of the issues that
arise.

One issue that must be addressed relates to the fact that
many MPI functions that expect a communicator as an
argument are defined in terms of the process group
associated with that communicator. For example,
MPI_COMM_SIZE is defined to refer to the “number of
processes in the group of comm,” rather than the “number
of local communicator objects.” In standard MPI, these
two definitions are equivalent. However, in MPI with our
extensions, they are not equivalent and, in fact, we may be
interested in either one or the other definition in different
situations.

We address this problem by retaining the existing
interpretation of any MPI function that refers explicitly to
processes and by introducing new functions that operate
explicitly on LCOs. To retain the existing interpretation of
MPI functions that refer to processes, we provide the
following definition:

Definition. The process group associated with a local commu-
nicator object is the list of processes referenced by its send slots
with duplicates removed.

An advantage of this interpretation is that functions such as
MPI_COMM_SIZE and MPI_COMM_RANK can be applied

DEMAINE ET AL.: GENERALIZED COMMUNICATORS IN THE MESSAGE PASSING INTERFACE 615

unchanged to an LCO that forms part of a communicator
structure. These functions can also be applied to other
LCOs, although the results may not always be useful.

Some programs will require information about LCOs
rather than processes. For example, a program that creates a
communicator-like structure with more LCOs than
processes may want to send a message to each LCO.
In this case, MPI_COMM_SIZE cannot be used to
determine the number of LCOs. However, the function
MPI_COMM_NUM_SEND_SLOTS provides the required
information.

5 IMPLEMENTATION

This section describes a prototype implementation of the
proposed MPI extensions. This prototype has been
constructed by modifying a widely used MPI implemen-
tation, MPICH [13]. The modifications required for any
MPI implementation are inevitably focused within the
MPI communicator construct. Hence, we begin by
describing how communicators are represented within
MPICH.

The two principal components of an MPI communicator
as represented in MPICH are a process group and a context.
The process group is represented by a sequence of process
identifiers stored as an integer array. A process’s rank in a
group refers to its index in this array. The array contains for
each index an address in a format that the underlying
device can use and understand, for example, the rank in
MPI_COMM_WORLD. The context associated with a
communicator is represented by an integer. Note that
the communicator data structure maintained in each
process has the same process group and context values.
These were determined by the collective operation that
created the communicator. When a message is sent, the
rank provided in the send call is used to extract a process
identifier from the process group array associated with the
communicator on which the send is performed. The
message is then sent to that process, together with a
message envelope containing the rank of the sending
process, the tag, and the integer context identifier
associated with the communicator.

An LCO has a somewhat different structure.
Corresponding to the MPICH integer representation
of a context is an integer LCO identifier, which is
assigned when the LCO is created. This identifier is
guaranteed to be unique only within the creating process.
Corresponding to the MPICH process group is an array of
send slots. Each entry in an LCO’s send-slot array
contains a process identifier, an LCO identifier, and a
receive-slot index. Receive operations proceed in a manner
identical to an MPI receive. A send operation differs from
an MPI send only in that, when constructing the message
envelope, it uses the receive slot index for the rank and
the LCO identifier as the context. We note that one
significant advantage of this approach relative to the
MPICH communicator structure is that identifiers can be
allocated in a purely local fashion. Hence, collective
operations are not required for communicator creation
and the identifier name space can be more densely
populated.

The execution time overhead introduced by this
modification is minimal: When sending a message, two
additional array references are required to determine the
appropriate context and receive slot and, when receiving a
message, no additional code is required. The principal
overhead is thus the additional space required to maintain
an LCO identifier and receive-slot index in each send slot,
although this is still a constant factor times the number of
send slots. In addition, one can imagine optimizations that
recognize sets of LCOs representing MPI intracommuni-
cator or intercommunicator structures and revert to the
more compact representation in this case.

In summary, the required changes to MPICH were
minimal and induce almost no overhead. It would be
almost impossible to experimentally measure the few
additional instructions added in our implementation.
Hence, the generalized communicator extensions are
practical and easy to implement, while greatly increasing
the flexibility of MPI communicators and MPI-2 dynamic
process spawning.

An alternative implementation approach would use a
communication library, such as Nexus [14], that provides
global pointer and single-sided communication operations.
In this environment, a send slot can be represented as a
global pointer to a remote queue corresponding to a receive
slot and a send operation can be implemented as a remote
enqueue operation. This technique has been used to
construct an implementation of ordinary MPI [15].

6 CONCLUSIONS

We have presented extensions to the MPI communicator
that permit the representation of more general and flexible
communication structures. These extensions are backwards
compatible with MPI, meaning that any existing MPI
program will execute correctly in a system that supports
the new constructs. We believe that the new constructs can
be incorporated into existing MPI implementations without
difficulty and without significant performance degradation.

A disadvantage of the extensions as presented here is
that, because LCOs (and slots within LCOs) are created and
destroyed independently, we lose MPI's message safety
property. That is, a message may arrive for a nonexistent
receive slot. This problem can be avoided, at the expense of
added complexity, by using one of the various mechanisms
that have been developed for managing distributed objects,
such as reference counting.

The generalized LCO proposed in this article also
appears to have other uses. For example, LCOs can be
used to manage “one-sided” communications in which the
arrival of a message triggers the execution of a handler
function. By requiring these communications to occur over
an LCO, we provide an endpoint on the receiver side with
which control information can be associated. LCOs can also
be used to define generalized collective communication
operations in which user-defined transformations are
applied to data supplied by an arbitrary number of senders
and the results of these transformations are delivered to an
arbitrary number of receivers.

616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001

ACKNOWLEDGMENTS

This work was supported by the Natural Science and
Engineering Research Council of Canada, the US National
Science Foundation’s Center for Research in Parallel
Computation, under Contract CCR-8809615, and by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and
Technology Research, US Department of Energy, under
Contract W-31-109-Eng-38.

REFERENCES

[11 W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1994.

[2] M. Snir, SW. Otto, S. Huss-Lederman, D.W. Walker, and
J. Dongarra, MPI: The Complete Reference. MIT Press, 1996.

[3] JM. Squyres, B.C. McCandless, and A. Lumsdaine, “Object
Oriented MP: A Class Library for the Message Passing Interface,”
Proc. Parallel Object-Oriented Methods and Applications Conf.,
http:/ /www.mpi.nd.edu/research/oompi/documentation.php,
1996.

[4] “MPI-2: Extensions to the Message-Passing Interface,” Message
Passing Interface Forum, http:/ /www.mpi-forum.org, 1997.

[5S] J.H. Reppy, “Concurrent ML: Design, Application, and Seman-
tics,” Functional Programming, Concurrency, Simulation, and Auto-
mated Reasoning, 1993.

[6] I Foster and K.M. Chandy, “Fortran M: A Language for Modular
Parallel Programming,” J. Parallel and Distributed Computing, 1994.

[71 L Foster and S. Taylor, “A Compiler Approach to Scalable
Concurrent Program Design,” ACM Trans. Programming Languages
and Systems, vol. 16, no. 3, pp. 577-604, 1994.

[8] L Foster and S. Taylor, Strand: New Concepts in Parallel Program-
ming. Prentice Hall, 1990.

[9] A. Skjellum, N. Doss, K. Viswanathan, A. Chowdappa, and
P. Bangalore, “Extending the Message Passing Interface,”
Proc. 1994 Scalable Parallel Libraries Conf., 1994.

[10] “Document for the Real-Time Message Passing Interface
(MPI/RT-1. 0),” Real-Time Message Passing Interface Forum,
http://www.mpirt.org, 2000.

[11] L. Foster, C. Kesselman, and M. Snir, “Generalized Commu-
nicators in the Message Passing Interface,” Proc. 1996 MPI
Developers Conf., pp. 42-49, 1996.

[12] M. Haines, P. Mehrotra, and D. Cronk, “Ropes: Support for
Collective Operations among Distributed Threads,” Technical
Report 95-36, Inst. for Computer Application in Science and Eng.,
1995.

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard,” Parallel Computing, vol. 22,
pp. 789-828, 1996.

[14] L Foster, C. Kesselman, and S. Tuecke, “The Nexus Approach to
Integrating Multithreading and Communication,”]. Parallel and
Distributed Computing, vol. 37, pp. 70-82, 1996.

[15] 1. Foster,]J. Geisler, W. Gropp, N. Karonis, E. Lusk, G.
Thiruvathukal, and S. Tuecke, “A Wide-Area Implementation of
the Message Passing Interface,” Parallel Computing, vol. 24, no. 11,
1998.

Erik Demaine received the MMath degree from
the University of Waterloo and the BSc degree
from Dalhousie University. He is currently a PhD
student in computer science at the University of
Waterloo. His research interests include parallel
and distributed computing, particularly message
passing, as well as algorithms, data structures,
and computational geometry. He is a member of
the IEEE Computer Society.

lan Foster is a senior scientist and associate
director of the Mathematics and Computer
Science Division at Argonne National Labora-
tory. He is a professor of computer science at
the University of Chicago and a senior fellow in
the Argonne/U.Chicago Computation Institute.
He has published four books and many papers
and technical reports in parallel and distributed
processing, software engineering, and computa-

' tional science. He currently coleads the Globus
project with Dr. Carl Kesselman of USC/ISI, which was awarded the
1997 Global Information Infrastructure “Next Generation” award and
which provides protocols and services used by many distributed
computing projects worldwide. He cofounded the influential Grid Forum
and recently coedited a book on this topic, published by Morgan-
Kaufmann, entitled The Grid: Blueprint for a New Computing Infra-
structure.

Carl Kesselman received the BS degree in
electrical engineering from the State University
of New York at Buffalo, the MS degree in
electrical engineering from the University of
Southern California, and the PhD degree in
computer science from the University of
California at Los Angles. He is the director of
the Center for Grid Technologies at the
E / University of Southern California’s Information
L& /.l Sciences Institute. He is also a research
associate professor of computer science at the University of Southern
California and a visiting associate in computer science at the California
Institute of Technology. His research interests are focused on all
aspects of grid computing, including grid architecture, wide-area data
management services, resource management, and security. Along with
Dr. lan Foster, Dr. Kesselman coleads the Globus project, which is
developing core technologies for grid systems. He is a member of the
IEEE and the Computer Society

Marc Snir received the PhD degree in mathe-
matics from the Hebrew University of Jerusalem
in 1979. He is senior manager at the IBM T.J.
Watson Research Center, where he leads
research on the Blue Gene massively parallel
system. He worked at New York University
(NYU) on the NYU Ultracomputer project from
1980 to 1982 and worked at the Hebrew
University of Jerusalem from 1982 to 1986,
when he joined the IBM T.J. Watson Research
Center. At IBM, he headed research that led to the line of high
performance IBM SP systems. He has published more than 100 journal
and conference papers on computational complexity, parallel
algorithms, parallel architectures, and parallel programming. He also
coauthored the MPI standard and contributed to other languages,
libraries, and tools for parallel programming. He is on the editorial board
of Transactions on Computer Systems and Parallel Processing Letters.
He is member of the IBM Academy of Technology, a fellow of the ACM,
a fellow of the IEEE, and a member of the IEEE Computer Society.

> For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

